

Me

Sections

!  Introduction

!  Development Activities

!  Dealing with Technical Debt

!  Bonus: How to become an ‘Agile Architect”

Agile

!  Lean

!  Value Stream

!  Discipline

!  “Embrace Change”

Architecture

!  “Everything that is expensive to change”, Fowler

!  Three basic elements
!  Responsibility, Dependency, Interaction

!  CRC – Class-Responsibility-Collaboration

Design

!  Domain analysis –
!  [Domain-Driven Design]
!  Or ‘how to find the responsibilities?’ [POSA 5]

!  Optimizations for ‘Qualities’ shape the design
!  Merge & split responsibilities
!  Deployment of responsibilities
!  New dependencies – new interactions

!  Aligning the design with technology

Architect

!  Technical Leadership
1.  Communication

2.  Consistency

3.  Coaching

4.  Coding

Complexity / Simplicity

!  Dependencies

!  Constraints

!  Coupling & Cohesion

!  Terms are relative

Change

!  The only constant is change
!  Requirements change

!  Technology changes

!  Business changes

!  People change

!  Ability to react on Change depends on the Architecture

Mindset

!  “Embrace change” – “Embrace uncertainty” [North]

!  YAGNI

!  Fail fast – learn fast

!  Systems live longer than we expect
!  Example Millennium bug

!  Introduction of SW products well planed, but
Removal/de-installation not planed

Managing Change

!  Control complexity

!  Look ahead

!  Isolate

!  Do not prepare

!  Do not prohibit

!  Trade-off: Cost, time, benefit

Can you plan?

!  … what you know
!  Vision vs. Debt

!  Mobile devices are a fact.

!  … what you guess
!  Cloud relevance for your product?

!  … what you hope
!  Technology bets: Will Windows Phone 8 catch on?

Size Matters

!  From: Small Local Team

!  To: Dispersed Global Teams

Vision

!  Demand a product vision … or
!  Write one and ask for confirmation

!  Align all stakeholders

!  Say what it is

!  Say what it is NOT

!  Baseline on where you are incl. your technical debt

Requirements

!  Remember: Fail fast. This is your first chance!

!  Domain language

!  Feature model
!  Complete

!  Hierarchical

!  Domain knowledge

!  Managing Variability

Backlog

!  Contains
!  Customer features

!  Refactoring & Redesigns

!  Governance

!  ‘Everything that makes a team busy’

!  Prioritized by Product Owner and Architect

Governance

!  In general: Protect your Qualities
!  Developmental

!  Operational

!  In this talk: Flexibility, Extensibility, Maintainability

!  You can only plan with what you control

Governance Example

"  Framework usage Rules & Guidelines

Variability Management

Corrective Tests

Static Code Checkers

Architecture Review

"  Commonality/Variability analysis
"  Extension points

"  Integration Tests
"  Staged multi-client-multi-modality tests
"  Performance Tests

"  Coding guidelines
"  Dependencies, API violations

"  ATAM review
"  Plan big picture course corrections

P
re

ve
nt

iv
e

C
or

re
ct

iv
e

"  Consistency
"  Complexity

"  Extensibility

"  Stability
"  Performance
"  Update-ability

"  Stability
"  Performance

"  Sustainability
"  Extensibility
"  Maintainability

Reference Architecture
"  Component types
"  Allowed dependencies

"  Consistency
"  Maintainability

Preventive Tests "  Stability "  Unit tests
"  Integration &Smoke Tests

Concept Reviews "  Peer review of critical changes "  Sustainability
"  Performance, etc.

Guiding principle: Fail fast!
Always running system, Continuous Integration, Gated Check-in, Staged testing, Continuous System Test

Technology

!  One of the hardest things to change

!  Isolation recommended
!  Check out ‘Quasar’ [sd&m, J. Siedersleben]

Coupling & Cohesion

!  Decouple only where you expect change

!  Inversion of control

!  Dependency injection

!  Protocols, Standards, etc.

Patterns

!  Structure
!  Initial Context

!  Problem with Forces

!  Solution with Consequences

!  Resulting Context

!  Careful usage: Resulting context should be positive!

!  Pattern-Oriented-Software Architecture [POSA]

Test

!  No Test = No Change

!  Interplay of test layers
!  Unit Tests incl. Mock

!  Smoke Tests

!  Automated System Tests

Quality

!  What you do not measure, you do not know.

!  Quality is relative
!  Define your quality model

!  Base is the product quality tree

!  Align the rules with the qualities

!  Derive your Code Checker Rules and their Criticality

Performance

!  No Test, No Trending = No Protection

!  “Worry about it later” is typically the wrong strategy

!  Instead define it up front: Quality Model/Tree

!  Continuously trend it

Documentation

!  “Design decisions as first class citizen” [Jan Bosch]

!  Minimum:
!  Assumptions / Constraints
!  Alternatives
!  Rationale
!  Decision

!  Architects use also written words to lead
[Writing with Style]

Examples

!  Example: Sync via Dropbox vs. iCloud
!  Staying in control

!  Example: System Integration
!  Decoupling release lifecycles

Technical Debt

!  Identification
!  Explicit business drivers

!  Quality tree incl. scenarios

!  Assessment [ATAM]

!  Mapping risks to business drivers & scenarios

Arguing for Big Change

!  Impact & Consequences

!  Big Picture Vision

!  Business Case
!  Difficult but sometimes necessary

Introducing Big Change

!  Plan

!  Communicate broadly esp. upwards

!  Step-wise
!  Limit risk

!  Gain confidence

!  Celebrate successes

Examples

!  Example: Re-implementation
!  Workflow module

!  Example: Changing paradigms
!  Data loading strategy

How to become an Agile
Architect

!  Know how
!  Easy to gather

!  Experience
!  Time will teach

!  Capabilities
!  Hard to change

Identify the need for each individual architect.

Know How

!  Agile / Lean

!  Test Driven Development

!  Architecture

!  Technologies

Experiences

!  Architecture Reviews

!  Code Reading

!  Patterns

!  Great frameworks [Cocoa]

!  Communities

Capabilities

!  Communication

!  Feedback

!  Leadership (Styles)

!  Coaching (Peer-to-Peer)

michael@nature-software.com

