
Combining Systematic Reuse with Agile Development –
Experience Report

Michael Kircher
Siemens AG, Healthcare Sector, SYNGO

Hartmannstr.16, D-91052 Erlangen
Germany

+49 9131 84-7392

michael.kircher@siemens.com

Peter Hofman
Siemens AG, Healthcare Sector, SYNGO

Hartmannstr.16, D-91052 Erlangen
Germany

+49 9131 84-4303

peter.hofman@siemens.com

ABSTRACT
This paper documents the experiences of Siemens Healthcare

in mastering challenges when transitioning a large-scale dispersed
platform development organization to Agile. Product Line
Engineering aims at increasing productivity through reuse, but
since strategic reuse requires up-front decisions, is also seen as
heavy weight and process driven. Agile development on the other
hand is perceived as lightweight, change friendly, but at the same
time neglecting long term strategic planning. With this paper we
want to report on our experience combining both approaches, PLE
for strategic reuse and agile principles for achieving steady
progress while still leveraging the long-term benefits. The key
was to build the foundation on the common best practice of
'feature-orientation' present in flavors in both disciplines. Feature-
orientation allowed merging both disciplines into a holistic
approach that blends the benefits of product line engineering with
those of Agility – resulting in improved product delivery, as well
as employee and customer satisfaction.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – Life cycle,
Productivity, Software Process Models.

General Terms
Management, Economics, Experimentation, Human Factors.

Keywords
Agile, Lean, Hierarchical Platform

1. INTRODUCTION
Siemens Healthcare is one of the leading providers of

biomedical technology, offering a complete spectrum of
diagnostic technologies from in-vitro diagnostics to medical
imaging and information technology. Over 45,000 employees
worldwide develop trend-setting innovations focusing on
supporting their customers’ clinical and administrative
workflows.

All products containing medical imaging functionality share

a considerable number of commonalities. Even if the concerned
products belong to completely different product lines, e.g.
medical scanners or advanced visualization systems, they
essentially have to fulfill the same requirements in their imaging
functionality and may differ only in their configuration.

Supporting a common platform for these various products of
different product lines can generate benefits from the financial,
time-to-market and usability points of view.

However, experience shows that such big platforms are often
bottlenecks in product lines; development is inefficient because
feedback comes late when a component finally is used in a
product; features do not meet the customers’ expectations because
platform developers requirements differ from product
development and are far away from the end customer, which
requires rework and threatens all the expected benefits we wanted
to achieve with the platform.

We address the challenges with a combination of agile
development and product line engineering in our platform
development organization.

2. Challenges
2.1 Challenges in Scoping

Siemens Healthcare supports several product lines of several
business units that build healthcare imaging products using a
common platform. Image management and image visualization
has a lot of reuse potential; the requirements of a number of sub-
domains do not differ much from one product to another.

When we changed our processes to more structured reuse
some years ago, a major challenge was to come up with the scope
for each platform release that had to support several products of
several product lines with conflicting interests. For one product
line a feature from the platform is an essential enabler, for another
product line it is at best a “nice to have” feature.

Deciding whether a stakeholder request really should be
developed by the platform is a key challenge, given the amount of
requests that arrive each day. There is a good chance that the
resulting scope supports every product line a little bit, but not
enough to really benefit each one, or that the resulting feature set
cannot be implemented within a consistent reference architecture
at all.

With endless lists of requirements mixed together from
different stakeholder groups and without deep understanding of
each others business goals, scoping sessions often become endless
negotiations, where every application engineering group tries to
get as many requirements into the platform as possible, since this
unburdens resources for product specific development. To get the
support of other groups, requirements are easily marked as

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

SPLC '12, September 02 - 07 2012, Salvador, Brazil
Copyright 2012 ACM 978-1-4503-1094-9/12/09…$15.00.

commonalities, even if all but one groups only needed the
requirement for their own products in later releases or these
requirements were not essential for their products.

For agile development a defined product backlog is essential,
especially for a platform that has to support many products. So,
how could the different stakeholder groups – the different product
lines – best agree on a common scope for the platform?

2.2 Challenges in Organizational
Decomposition

Over the past decade multiple organization forms had been
tried. The latest approach was to decompose the organization in
departments that reflect the subsystem structure of the
architecture. With this it was easy to focus on the subsystem and
optimize their scope, design, as well as development. The teams
could act consistently across the different roles of the sub-
organization, as every role participating in the value stream of the
sub-system was close. The world of the subsystem was fine – but
not the world of the system.

After several development iterations it was noticed that the
overall system consistency suffered. Also, as the subsystems were
aligned in parts according architectural layers and not according
to features or feature groups, end-customer features required
deliveries from multiple departments, multiple teams and with
this created severe inefficiencies because of the communication
overhead over department fences. We needed to find a way how
to make the development teams as much independent of each
other as possible to work efficiently, but at the same time produce
end-customer features consistent both, from usability, as well as
from design perspective, within the feature and across the
architecture.

2.3 Challenges in Process Efficiency
 We followed an iterative process that prescribed a layered

integration. The idea was to finish architectural layers bottom-up
one after another. Every lower layer should provide a sound
foundation for the next higher layer, until once every 6 weeks the
system would be complete, to be fully integrated and tested.

As medical devices have to fulfill certain pre-requisites with
regards to patient safety, development organizations have to
adhere to regulations. In essence those expect that you have made
very conscious and documented choices how to come from design
input – requirements – to a solution design. The choices have to
be documented because the processes and evolution of the
product has to be reliable and repeatable –product creation should
not be just a coincidence.

Because of those regulations a certain level of process
descriptions and development documentation is necessary.
However, if regulations become too heavy weight, e.g. if an
organizations does more than absolutely necessary, it can become
inefficient easily and kill creativity and motivation by drowning
the organization in document writing, signing, reading, reviewing,
revising, while not actually creating value – or creating little
value after lots of delays involving activities around functionality
that potentially never gets shipped to a customer: the organization
produces waste.

While there was some uncertainty whether agile processes
and practices would scale to a large-scale, regulated platform
development, the need for a change was obvious – at latest when

people were confronted with the value stream analysis results – as
they are typically done in lean analysis.

To address the three challenges of Scoping, Organizational
Decomposition, and Process Efficiency we applied Product Line
Engineering (PLE) and Agile/Lean Development best practices
jointly.

The feature-oriented [6], feature-driven [2] approach with the
feature model structuring the overall domain and scope of our
software product lines became the foundation on which further
PLE and Agile benefits could be leveraged.

3. Feature-Orientation
In this paper we use the term “Feature Orientation” to refer

to the sum of understanding about features, their structuring, and
development as defined by

1) Feature Oriented Software Development [4]

2) Feature-Driven Development [2] as well as

3) Feature Modeling [3]

The term feature is widely used in the context of product line
engineering but also agile development. Products can be thought
of by being a composition of a set of features in order to fulfill
customer requirements. In [6] a feature is defined as an
“prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or system” while according to
[4] a feature is “an increment in program development or
functionality”. To our opinion both definitions do not contradict
but much more extend each other, especially when blended.

Feature Oriented Software Development is a paradigm
connected to Software Product Line Engineering. One of its key
principles is the composition of products from individual features.
Features are observed holistically including their impact on the
solution space, e.g. all aspects and artifacts are considered in
feature-based program synthesis.

Feature-Driven Development on the other side is more
connected to the agile methods where product value creation is
“driven from a client-valued functionality (feature) perspective”.

Feature modeling was introduced in [6] as part of the domain
analysis and domain-modeling phase to systematically describe
the common and variable features shared among the products of a
product line. The analysis of common and variable features is a
crucial part of the product line scoping process. In feature
modeling, a feature model represents the features of a family of
systems in the domain and relationships between them [6]. A
feature model structures and decomposes the entire platform or
product functionality in a hierarchical tree.

The advantage of blending the three methodologies together
is that not only the elicitation criteria become crisper, but also all
lifecycle aspects from analysis, decomposition, documentation,
structuring, planning, implementing, “accepting”, etc. clearly
defined and guided by a set of existing best practices.

4. Agile Development
Agile methods generally promote a disciplined project

management process that encourages frequent inspection and
adaptation, teamwork, self-organization and accountability; a set
of engineering best practices that allows for rapid delivery of

high-quality software; and a business approach that aligns
development with customer needs and business goals.

There are many specific agile development methods. Our
organization employs a adaptation of the Scrum process [9].
Scrum is a process framework based on iterative & incremental
and time-boxed development, a disciplined process guidance,
strong customer involvement and constant process improvement.
The purpose of these practices is to minimize the risk in a
development project, especially when requirements are not fully
known up front or may change during development. Therefore,
after rough planning for the overall development effort,
prioritization and planning of product features is a recurring issue
and can be adapted in every iteration. Likewise, architecture is
subject to changes and re-factoring as new features are
implemented.

However, platform or product line development is different
from product development when deciding on the scope of the
work to be done and when determining the architecture. In
product line development several products depend on the reusable
parts developed by the platform organization. Typically, platform
and products are developed in parallel, not sequentially.
Therefore, it is necessary to invest more in both scoping
(balancing requests and priorities from various platform users)
and the architecture design beyond what is common practice in
agile development. This focus on up front activities generally
leads to more rigid, more waterfall, and more documentation
centric development approaches.

How to conquer and limit the rigidness will be explained in
the next sections.

5. Feature-Orientation as Key Enabler
The following graphic in Figure 1 displays how Agile and

PLE practices – applied carefully and consciously – can extend
each other’s benefit. Note that the topics are used to structure the
further proceeding of this paper.

Feature-orientation is the glue that firstly enables many of
the value stream optimizations according to lean and agile
principles, and secondly allows for the transparency and overview
to base rational and systematic reasoning, business-driven and
with a clear focus on the customer.

Figure 1: Feature-orientation as foundation for PLE and
Agile

The main messages of the paper are:

1. Agile methodologies and Product Line
Engineering can be effectively combined.

2. Organizational decomposition into value-stream
oriented Scrum teams benefits greatly from feature
modeling.

3. Feature modeling supports well the continuous
scoping to changing business needs.

The following subsections explain the main ingredients of
the approach.

5.1 Backlog-driven Development
The key of Scrum is the existence of a backlog, which

consists of items with the same level of granularity that can be
prioritized and groomed before being implemented. The creation
of such a backlog for a platform is not easy with multiple
stakeholders present.

Our feature model contains existing functionality, as well as
planned or wished functionality in its consistent representation.
The feature model reflects the overall domain of imaging
applications that is relevant for our products, and helps all the
stakeholders to get the same understanding of the domain and
better see the variability within the domain. It focuses the
discussion and gives a good overview on areas that are already
very well supported by the platform and on areas that are not
covered, maybe because the requirements are advanced or
because the variability is too high to implement the features in the
platform.

Features that are to be developed in a future release are
linked to a platform backlog; features scheduled for next release
are additionally linked to the release backlog of that release.

To focus a release with coherent sets of features, every
release gets a handful of mottos (or goals) that guarantees that
some products get real value, while other products have to wait
for another release. Mottos are goals that are to be achieved –
such as: “Enable radiologists to use the product for clinical
routine in the area XYZ.” The advantage of this is that there are
products that really make a difference as opposed to many little
improvements in many products that do not differentiate the
whole product line from competitor products. The order of
features in the platform backlog is also called 'roadmap' and
consists of mottos assigned to releases.

After adding the attributes that are required to plan and
control the project and the different releases of the platform, we
are prepared for the project management challenges with the
additional benefit of having a direct relationship from each
backlog item to the business needs, because the backlog items are
linked to features and they are linked to mottos. .

Progress monitoring in so-called burn-down charts allows for
quite transparent tracking of a project. As with every iteration the
development teams velocity get more validation, hence certainty.
The velocity applied to the high-level groomed remaining backlog
items can be used to predict the point in time when the platform
scope is actually completed. Especially in large-scale
development organizations with fairly fixed budgets, hence fixed
timelines, time-boxed development is best practice. And if things
do not turn out as expected, knowing the divergence early enough

– e.g. 9 months ahead of planned release – is a necessary luxury.
Two options exist, delay the platform and product delivery, or
reduce scope together with dependent products. Both are a misery
product wise.

But not only feature completion can be tracked, also the time
until it is sold and used by end-customers, basically the time until
it is returning its invest. It can be quite an eye opener reflecting on
this transparency, how much dead capital is buried in modern
software products, resp. their development [5]. The dead capital
can be visualized by tracking implementation increments in
relation to their first customer usage.

5.2 Family Model
A feature model describes the problem space. In our

development we link the problem space description to the solution
space for traceability and impact analysis and for supporting the
various types of variability when a product is derived from the
product line. Solution space models are called family models; a
term adopted from the company Pure Systems. The main family
model consists of a hierarchical architecture model consisting of
subsystems and their components, which allow an n:m mapping
between the features and the components. When doing this
mapping in an early phase of the project it helps us to …

 … know whether additional components or
subsystems have to be created to cover the new
functionality

 … know the complexity of a feature, for instance
by knowing how many subsystems are affected by
the new feature

 … estimate the expected effort to implement a
feature

 … identify areas that require a redesign or re-
factoring (e.g. if a mapping from one feature to
many components is done, it indicates that a re-
design could be required)

One main advantage of using the family model is the
possibility to optimize efforts when performing a local regression
test. Instead of having to perform a complete test-run of the
system again after each modification we perform only an impact
test based on the impact of the executed source code changes. The
impact is determined by using the information of the family
model and how it is linked to the feature model. For each change
in the code, the affected features are identified through the trace
links and only their tests are re-executed.

5.3 Business-driven Platform Evolution
Strategy discussions around product line evolution can now

be supported with crisp mottos instead of long and tedious Excel
sheets, because a motto would be the root of a clearly identifiable
sub-tree in the overall feature tree. As the mapping from the
motto to the features is unique, a detailed lookup can be done any
time.

The connection to the family model allowed for early and
more complete impact estimations, enabling higher quality of
effort estimations, as they are the bases of business decisions.

5.4 Variability Management
So far we have not discussed the situations when individual

products require different functionality from the platform. This
might be functionality that can be added or removed for a specific
product incarnation or has variation points that can be set or
customized for a product. Historically, the approach was to just
ignore the fact that functionality can vary and support every
product alike, meaning a maximalist platform approach was used,
which lead to lots of variability all over the platform. With the
transparency the feature model gave us, it is now the goal to
maintain a minimalist hierarchical platform.

The feature model with our commonality/variability analysis
methods helps us realizing our declared goal of a minimalistic
platform. Product specifics are not added to the general pool of
reusable components, but are put to either the product or – if reuse
can be discovered at a different level – higher-level reuse pool.
Figure 2 shows our hierarchical platform that helps minimizing
the variability on every layer.

Figure 2: Hierarchical Platform

5.5 Organization of documentation
Developing medical products means: being very transparent,

persistent and verbose on the decision and design input processes.
Where persistent means that written documentation needs to be
maintained. In agile requirements engineering the documents
would be requirement specifications and user stories. Both
document types highly benefit from the clear and stakeholder
value driven separation of the problem space achieved through the
feature-oriented partitioning, because author responsibility as well
as decomposition from market requirements to more fine granular
development requirements is easier and more natural.

Roles related to requirements engineering, such as risk
managers, usability engineers, and technical documentation
appreciates clear decomposition as well, easing their job. We
were able to reduce the communication overhead and increase
product consistency with our feature-oriented approach.

5.6 Self-organizing Feature-oriented Scrum
Teams

A best practice of lean thinking – and with a bit of practice
quickly observable – is the demand that the dependencies between
Scrum teams in the value creation chain need to be minimized.
Having dependencies and/or cross-cutting constraints – so called
steel threads in agile methodology – bind and limit teams
unnecessarily to each other.

A sound decomposition – not to say a partitioning – of
features in the hierarchy of the feature model and selecting
coherent sub-trees, which we call 'feature area', assigned to
individual Scrum teams is the solution. This way a Scrum team
can truly deliver end-customer functionality while during the
feature development step be as much independent as possible. The
quality of independence is very much dependent on the quality of
the feature partitioning in the feature model. Steel threads might
still exist in the solution space, which can be mitigated by
concepts of ‘Component Guardians’ as the like.

Structures with a single project lead and the rest of the
organization following his command in detail do not scale
because of the high need for collaboration and ad hoc problem
solving. Hence such activities are best guided by self-organizing
teams, which are responsible but also flexible enough to quickly
react and avoid typical bottlenecks.

5.7 Organization Optimized around Value
Stream

Scrum teams working on isolated feature areas allows
already for a great deal of efficiency. Wasteful clarification, high-
level integration and very often escalations are avoided. It
becomes now important that not only feature-wise but also
competency-wise the Scrum team can deliver independently. The
Scrum team should have all process as well as design and
technical know-how to act independently.

Typical crosscutting concerns like interactions and
dependencies between hardware & software and operational
qualities are best governed by non-Scrum 'helper' teams
supporting the actual value streams.

One of the measured improvements was that individual hours
of overtime could be reduced by 60% comparing the software
release before and after the agile transition.

Another improvement was that the product release after the
transition also adhered to its time-box and minimal viable product
commitment – securing timely product delivery. This is not only
valued by internal stakeholders like product developers, but also
by customers – confirming Siemens as reliable partner.

5.8 Solution Simplicity
The main motivators why solutions get simpler is derived

from Variability Management and Scoping. Being able to avoid
complexity by not having to support specifics and exotic variants
alleviates the development majorly.

Experience shows that complex technical solutions very
often lead to complex user interactions. So simplifying solutions
benefits also customers. If the usability follows simple paradigms
the product can also be quickly understood and adapted by
customers.

5.9 Early Product Feedback
Platform development finishes one feature after the other,

instead of working in subsystems with arbitrary dependencies and
late integration. This continuous delivery of platform artifacts to
product developers in application engineering allows for early
feedback from those development groups that are typically closer
to the end-customer. Misunderstandings can be identified faster,
e.g. through continuous integration, operational quality tests and
smoke testing, and clarified earlier with less effort, compared to

fixing issues towards the end of a release then classic system
integration is done.

6. Summary
Applying product line engineering for more systematic reuse

leads to additional process steps and documentation. The
additional process steps and additional documentation artifacts
can have a negative impact on the efficiency of the development
team. While the long-term benefits of systematic reuse are proven
[8] little experience has been shared until now how to keep
development productivity also in the short term.

From the experience analyzed in this paper it can be
concluded that PLE and Agile do not contradict each other, but
complement each other when applied consequently on a
foundation of feature-orientation. The application of lean
principles not only alleviates the process and documentation
'burden' of medically regulated development, but also the 'burden'
of systematic reuse. The extra-effort of documentation, necessary
because of multiple reasons, ranging from regulatory tracing,
communication artifacts due to the large-scale project size, to
analysis and governance documentation can be chopped in
increments and to a considerable extent be elaborated in
iterations, instead of dedicated up-front phases. The disadvantage
of up-front phases is that effort is spent on work that will not in
the full extend or even not at all be relevant for later project
phases – hence create waste. This waste typically tends to delay
time-to-market, causes higher R&D efforts, and frustration of
R&D staff.

The DONE criteria connected with the completion of every
feature developed by a Scrum team became the main vehicle to
ensure consequent and diligent follow-up on the previous
increments to further complete and complement the artifacts.

7. References
[1] S. Apel and C. Kästner, An overview of feature-oriented

software development, Journal of Object Technology, 2009

[2] Feature-Driven Development,
http://en.wikipedia.org/wiki/Feature-driven_development

[3] Feature Model, http://en.wikipedia.org/wiki/Feature_model

[4] Feature Oriented Software Development,
http://en.wikipedia.org/wiki/Feature-oriented_programming

[5] A. Heck and M. Kircher, Agile Transition of a big medical
software product development, OOP Munich, 2012
http://www.slideshare.net/AgileAndrea/agile-transition-of-a-
big-medical-software-product-development

[6] Kang, K., et al. Feature-Oriented Domain Analysis (FODA)
Feasibility Study Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University, 1990

[7] K. Pohl, G. Böckle, F. van der Linden, Software Product
Line Engineering - Foundations, Principles, and Techniques,
Springer, 2005

[8] J. S. Poulin, Measuring Software Reuse: Principles,
Practices, and Economic Models, Addison-Wesley, 1996

[9] K. Schwaber, M. Beedle, Agile Software Development with
Scrum, Prentice Hall, 2001

[10] pure::variants, Variant management tool, http://www.pure-
systems.com/Variantenmanagement, 2006

[11] C. Larman, B. Vodde, Scaling Lean and Agile Development,
Addison-Wesley, 2008

