
 1

Encapsulating Crosscutting Concerns in System Software

 Christa Schwanninger, Egon Wuchner, Michael Kircher
 Siemens AG
 Otto-Hahn-Ring 6
 81739 Munich
 Germany
 {christa.schwanninger,egon.wuchner,michael.kircher}@siemens.com

ABSTRACT
System software has to encapsulate crosscutting concerns
properly. Aspect Orientation (AO) is a paradigm that
supports modularization of crosscutting concerns. But as
AO is relatively new it still lacks support suited for the
industry in many domains, e.g. support for the
programming languages C and C++ which are heavily used
in the embedded domain exists but not yet in the desired
scope and quality. To compensate for missing tools and
languages we need architectural solutions for the problems
around crosscutting concerns. Different system software
layers, starting from simple libraries to full blown
component containers can be used to provide support for
concerns that cut across whole applications. Patterns can
help to establish good architectures for this purpose. This
position paper briefly describes how design patterns can be
evaluated for their suitability to solve problems caused by
crosscutting concerns.

Keywords
System Software, Patterns, Frameworks, Components,
Aspect Oriented Programming.

1 INTRODUCTION
This position paper documents experiences in building run-
time system software in several domains. The company, for
which the authors work, typically does not build
commercial off-the-shelf (COTS) system software, but it
develops software for its hardware products. Those
hardware products stem from several domains, including
telecommunication, medical systems or automotive
systems. Associated with the hardware product families,
are the software product families, needed to operate the
hardware. Such software product families need to be
supported with frameworks or even custom made
component containers, which play the role of system
software for the software application developers. As system
software they foster reuse and help to develop good
software in short development cycles. With our experience
in building platforms for product families we want to
contribute to the field of system software.

During the last years, the authors saw several attempts to
build frameworks for system families fail, because the
architects of the frameworks were not aware of the

crosscutting concerns in the system. Because the project
did not capture and localize the concerns in the
architecture, the project faced several problems, such as
redundant implementations of the same functionality,
wastage of system resources, missing resource
consumption traceability, uniform error handling and
communication strategies resulting in cumbersome
integration.

This paper describes how crosscutting concerns can be
captured and localized in system software and how patterns
can help to build software that separates concerns properly.

Section 2 will explain our view on system software. Section
3 lists the software artifacts used to localize crosscutting
concerns, while section 4 enumerates selected patterns for
building architectures considering crosscutting concerns.
The paper concludes with a brief discussion of related work
and a conclusion in section 5 and 6, respectively.

2 SYSTEM SOFTWARE
According to [FODC00], system software is defined as:
“Any software required to support the production or
execution of application programs but which is not specific
to any particular application.”

System software can be aligned in to two categories:

• Production software – Production software
includes tools that help developers in the process
of designing, writing and managing software e.g.
compilers, linkers, debuggers, profilers or
complete IDEs, but also version control, building
tools, tracers, runtime checkers and analyzers,

• Run-time software – Software that is needed for
execution of applications at run-time or integrated
in the application, e.g. OS, supporting libraries,
middleware, services like persistency or event
services, frameworks or even component
containers, that offer their own runtime
environment.

Figure 1 shows typical layers in software. The layers range
from application software, to middleware, to the operating

system. Besides those layers, also the supporting compilers,
configuration management software, etc. is considered as
system software.

Figure 1: System Software

Software production tools, such as compilers and profilers,
are “stand-alone” applications and are usually not part of
any delivered system in our organization; therefore they are
not of interest for us in the context of this paper.

System software that runs or is part of the application
software, such as frameworks and component containers,
faces different challenges than stand-alone software. It has
to be built for reuse in various projects, or even domains, of
which many requirements are not known up front.
Additionally, the run-time system software has to be built
to integrate into other software.

System software, in our context, mainly deals with resource
provisioning and management (OS), communication
(communication middleware), event handling (application
frameworks), and GUI management (GUI frameworks).

In the next chapter we give an overview on the different
kinds of run-time system software and explain how they
can be used to support the localization of crosscutting
concerns.

3 CAPTURING CROSSCUTING CONCERNS IN

SYSTEM SOFTWARE
Depending on the layer, shown in Figure 1, and the domain
it is used in, system software has to handle one or several
of the following crosscutting concerns:

• Adaptability to application needs, e.g.
configuration of middleware, and exchangeability.

• Optimized resource management, e.g. memory
management or thread management.

• Transparent, non-invasive inter-process and
network communication.

• Initialization and destruction for efficient start up
and secure shutdown in resource restricted
systems

• Event dispatching and handling

The listed crosscutting concerns (also referred to as
aspects) are non-functional. Many domains also have
additional functional aspects, for example mobile phones
require messages to be passed without copying of the
message data, or the sharing of personalization information
across all applications in an automotive multimedia system.

Generally, AO tries to achieve the following goals via
encapsulation and localization of crosscutting concerns
(CCC):

• Modularity – The code for one CCC should be
located in one source code file.

• Uniformity – A CCC should be treated uniformly
in the whole application.

• Non-invasiveness – It should be possible to
change or extend the implementation of the CCC
non-invasively.

• Transparency – The CCC should be transparent to
the developers.

• Reusability – Reusable software components have
to be developed that can not know about the
environment and the crosscutting concerns they
will be reused for.

The previous two lists show the big overlap between the
problems faced in system software and the promised
solutions of AO.

Encapsulation of Crosscutting Concerns

Once the crosscutting concerns are identified, there are
several ways how to capture them in an architecture:

The simplest way for handling crosscutting concerns is to
provide an implementation in form of a library together
with guidelines how to properly use this functionality. This
is something that is usually done for simple crosscutting
concerns such as tracing and logging, but also for resource
management, where a library is provided that is the only
access point for acquiring and releasing a specific resource.

Libraries offer a collection of functions for dealing with
crosscutting concerns, frameworks do more. They not only
provide reusable code, but also influence the architecture,
for example by the inversion of the control flow. Also,
frameworks often address several related functionalities,
e.g. GUI frameworks implement GUI elements and the
mechanisms to deal with user events. Frameworks need to
be extensible, therefore they typically are built using
patterns, like Strategy and Interceptor, which allow
framework users to extend and customize the framework
functionality.

Component containers are advanced frameworks,
separating technical concerns, such as resource and

OS, Runtime Libraries

Services

Frameworks

Middleware

Appl.Server

Applications
Dev. Tools
(Compiler,
CM,
Profiler …)

lifecycle management, from business concerns, containing
the actual logic and functionality. They provide a run-time
environment for components that relieves the developer
from the technical concerns. Commercial component
containers are often only suited for business or finance
applications because they mostly cover only enterprise-
specific technical concerns, but not those of typical
embedded software or at least not as configurable or
lightweight as required.

Aspect-oriented (AO) programming seems to be the most
appropriate way of implementing crosscutting concerns in a
modular way. AO brings a number of advantages. Appling
AO crosscutting concerns can be modularized in exactly
one place, they can be weaved in or out as needed, and their
implementation and application is transparent to the
developer. On the downside, AO is a rather young
paradigm and there are not enough proven languages and
tools on the market, yet. Except AspectJ [Kicz97]
[Referenz to AJDT] no language can claim to provide
industrial strength stability and tool support. AspectJ is an
AO extension to Java, especially in embedded systems the
dominant languages are C and C++. AspectC++ is a noble
attempt to provide the same functionality for C++ as
AspectJ does for Java, but the language and the tools (a
plug-in for an MS IDE) are not widely used and can’t be
considered stable enough to implement critical features in
reusable system software.

When trying to achieve the goal of reusability for a family
of applications, traditional platforms define extension
points where the application developer plugs in application
logic in a prescribed way usually through base classes,
interfaces and templates. System software defines a
contract; applications use its functionality by fulfilling their
part of the contract. For typical framework approaches the
application has to know how to handle the system software,
but not vice versa. The programming model of AspectJ like
languages is different. Since the connection between the
aspect and application code often requires detailed
knowledge of the application code, it is a lot harder to pre-
implement generic, reusable system software.

Further, how will the quality of the resulting software be
ensured after introducing so many variation points? The
original assets – the software that should be augmented by
an aspect - are typically not designed to be extended; for
example join points are defined only later, independent of
the software to be extended.

So other alternatives are needed, as long AO, as the most
appropriate way to modularize crosscutting concerns in
system software, is not mature enough to get ‘picked’.

4 PATTERNS FOR BUILDING EXTENSIBLE
ARCHITECTURES

Since AO is still in its infancy, but crosscutting concerns

have to be handled properly, we evaluate how patterns, as
alternative concepts, can be used to build libraries,
frameworks, and component containers, which fulfill the
requirements like non-invasiveness, exchangeability,
reusability, and modularity for crosscutting concerns. This
is an ‘architectural approach’ to solve crosscutting concern
related problems. In a first step, we study the rich pattern
literature to find design and architectural patterns that help
to address the above mentioned requirements.

The table on the last page shows part of our current state of
evaluation of design and architectural patterns regarding
their usefulness to capture crosscutting concern related
problems. All selected patterns touch the area of
extensibility and/or integration of concerns, which were our
selection criteria.

For AO it is not relevant if the reason for encapsulating a
crosscutting concern is to make the implementation easily
exchangeable, to make the encapsulation transparent, or to
make the encapsulated concern reusable. With AO
mechanisms they are all addressed at once. Investigating
design patterns shows, that they are focused on specific
problems of separating the concern. But this is not really a
problem, since often, only one or a small number of the
above mentioned requirements have to be fulfilled at the
same time. Applying one or two patterns is often sufficient
to solve the specific problem related to a crosscutting
concern.

For example Decorator [GOF95] helps to add functionality
transparently without changing the decorated class and thus
can be used to add part of a crosscutting concern
implementation without polluting the original class.
Additionally, an Abstract Factory [GOF95] helps to hide
the decorated functionality from the client.

If the goal is reuse the crosscutting functionality the above
combination of patterns can not be used, since the decorator
class has to provide the same interface as the decorated
class. The concern implementation therefore needs to be
encapsulated, for example by a Strategy [GoF95]. Further,
if the concern is resource management specific, one or
several patterns of [POSA3], such as Pooling or Caching
can be used directly.

Because patterns (can only) address specific forces in
encapsulating and localizing crosscutting concerns, they
have to be categorized accordingly. This is the intend of the
attached table. The table contains the following
information:

• Patlet: a short description of the pattern.

• Addressed problem: what is the main problem the
pattern solves?

• Modularity: does the pattern help modularize a
crosscutting concern; how does it help?

• Uniformity: does the pattern help implement a
CCC uniformly throughout a system?

• Non-invasive exchangeability and extensibility:
does the pattern help to exchange the crosscutting
concern implementation without having to change
all the places the concern crosscuts?

• Transparency: does the pattern help to keep a
concern implementation and application
transparent to the application developer?

• Reusability: does the pattern support the
reusability of the concern code and/or of the
component code that is crosscut by the concern?

• Improvability with AO (AspectJ): could AO
improve the implementation of the pattern? Or
does AO make the pattern obsolete?

• Possible solution in AspectJ: describes the AspectJ
means we would use to implement the patter

For every pattern one to three “+” say how well it is suited
to address a specific problem, a “-“ indicates that the
pattern is not suited at all to solve the problem. The
additional text explains the rating. Several patterns fulfill
one or several of these criteria, but none of them fulfills all
of them the same way AO does. Also, many patterns that
are useful in localizing crosscutting concerns can further
benefit from an AO implementation, as can be seen in the
last but one column of the table.

Let’s take the Strategy pattern [GoF95] as an example.
Strategy encapsulates application logic and makes it
exchangeable transparently. It pretty well modularizes the
logic, but still depends on the state of the entity to be
extended (Modularity: ++). It is not meant to be used to
solve one crosscutting concern uniformly over a whole
application, rather targets one specific task (Uniformity: -)
but it keeps exchanging of the contained logic perfectly
transparent to clients (Non-invasiveness +++). The
implementation of Strategy is not completely transparent to
the client, since the client has to hold an instance and
trigger the Strategy’s functionality (Transparency +). A
strategy requires state information and can only be reused if
the required state is provided (Reusability +).

We want to continue evaluating patterns for a pattern
catalogue that is dedicated to problems related to
crosscutting concerns only. The next step after that will be
the evaluation of successful product family frameworks to
find the best practices for encapsulating crosscutting
concerns in design and architecture beyond the currently
documented patterns.

By recovering how to capture and localize crosscutting
concern in system software by ‘traditional’ means, we hope
to also learn more about how to use AOP for capturing and
localizing crosscutting concern in system software in the

future.

5 RELATED WORK
Jan Hannemann and Gregor Kiczales implemented all 23
GoF design pattern in AspectJ [Han02] and found out that
modularity and reusability were improved with AspectJ
[Kicz97] remarkably.

Books like Patterns for Concurrent and Distributed Objects,
[POSA2], Patterns for Resource Management [POSA3], or
Security Patterns [SPC02], are a few examples for pattern
collections and languages that offer solutions to problems
that partially stem from crosscutting concerns in specific
domains.

The work of Eide et al [ER+02] analyzed patterns
regarding their static and dynamic structures. As solution
the authors suggest to make participants of pattern
implementations easier to exchange, based on the
understanding that participants in the pattern literature
[GoF] can only be objects.

6 CONCLUSION
In this paper we gave a brief overview over the different
layers of system software and how they localize
crosscutting concerns. We argued that AO is not yet mature
enough to be used in the domains of interest to us. Thus we
investigated how patterns can help to build crosscutting
concern aware architectures for system software. We
started to evaluate design and architectural patterns that can
help building frameworks and component containers that
solve the problems crosscutting concerns bring up. Doing
this we raise the awareness of architects and designer for
crosscutting concerns. This not only supports contemporary
software development, but also paves the way for AO
technologies in the future.

REFERENCES
[ERR+02] E. Eide, A. Reid, J. Regehr, and J. Lepreau,

Static and Dynamic Structure in Design Patterns, ICSE
2002, 2002

 [FODC00] “The Free On-line Dictionary of Computing”
http://www.nightflight.com/foldoc/, 2004

 [GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides,
Design Patterns-Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[Hann02] J. Hannemann, G. Kiczales, Design Pattern
Implementation in Java and AspectJ. Proceedings of
OOPSLA 2002

 [Kicz97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda and C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect Oriented Programming. In Proc. of European
Conference on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science Vol.
1241, pp. 220-242, 1997.

[PLOPD4] N.B. Harrison, B. Foote, H. Rohnert, “The Role
Object Pattern” in Pattern Languages of Program
Design 4, p.14-31

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern-Oriented Software
Architecture – A System of Patterns, John Wiley and
Sons, 1996

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F.
Buschmann, Pattern-Oriented Software Architecture –

Patterns for Concurrent and Distributed Objects, John
Wiley and Sons, 2000

[POSA3] M. Kircher and P. Jain, Pattern-Oriented
Software Architecture – Patterns for Resource
Management, John Wiley and Sons, 2004

 [SPC02] Security Patterns Community: Security Patterns
Homepage. http://www.securitypatterns.de, 2004

Pattern Name Patlet Addressed
problem, domain

Modularity Uniformity Non-invasive
exchangeability,
extensibility

Transparency Reusability Comparison with AO
(AspectJ)

Possible solution
in AspectJ

Decorator Attach additional
responsibilities to an object
dynamically. This provides
a flexible alternative to
subcalssing for extending
functionality

extending
existing
functionality

+;each decorator
encapsulates one concern
for a single class, it is not
suited to encapsulate
concerns that span several
classes

-; localized to one
class

'+++; a decorator class
can be directly
exchanged within a chain
of decorators, no effect
on the decorated class

++ transparent
for developer of
original class but
not at
instantiation time

-, decorator has
to implement
the decorated
class’s
interface

+++; with AspectJ no
code changes
necessary when
inserting a new
decorator class into a
chain of decorators

comparable to
before/around
advice using the
method arguments
as pointcut context

Proxy Provide a surrogate or
placeholder for another
object

transparent
integration

+++, encapsulates
additional functionality,
but not meant to
encapsulate crosscutting
functionality

-, one proxy for
several classes not
applicable, since
signature has to
match

++, though proxy classes
have to be instantiated
instead of original class

+++ -, interfaces
have to match

+++, adherence to
interface not
necessary, therefore
reusable for several
classes

all kinds of advice

Visitor Represent an operation to
be performed on the
elements of an object
structure. Visitor lets you
define a new operation
without changing the
classes of the elements on
which it operates.

encapsulation of
operations on
tree structures

+++, Visitor encapsulates
additional operations on
an existing tree structure

++, only for the
tree structure
possible

++, extending the tree
structure with a new
node type requires the
adaptation of the new
class; new visitors can be
added non-invasively

++, every class
has to implement
an accept method

-, visitor is
specific to
visited classes'
functionality

+++, AO allows to
implement the Visitor
non-invasively even
in case of extending
the original class
hierarchy

introduction of
new method

Strategy Make application logic
exchangeable.

extension of base
functionality

++, encapsulates specific
code, but depends on the
state of the entity to be
extended.

-, just locally +++, it is the main
purpose to exchange
application logic.

+, the original
entity must
foresee a hook.

+, if the state of
the entity is
represented
similarly.

++, additional
(specific to the
extended application
logic) state might get
weaved in.

Introduction with
new methods and
all kinds of
advices.

Interceptor Allow functionality to be
added transparently to a
framework and trigger
automatically when certain
events occur.

extending
functionality in
call chains

+++, interceptor
implementation can target
several classes

+++ +++ +++ +++ +++ also execution
join points possible

before and after
advices with calls
join points

Resource
Lifecycle
Manager

Decouples the management
of the lifecycle of resources
from their use by
introducing a separate
Resource Lifecycle
Manager, whose sole
responsibility is to manage
and maintain the resources
of an application.

encapsulated
lifecycle
management;
domain: resource
management

+, localizes the lifecycle
management of one or
several resources;
transparently provides
pooling and caching of
resources; manages
interdependencies
transparently

++, resources are
managed
uniformly
throughout the
application

+++, allows to exchange
the resource management
strategies transparently;
to support new types of
resources, its interface
might need to get
extended.

+, resource users
need to use the
resource lifecycle
manager instead
of existing
resource
providers;
changes to the
strategies are
transparent

++, the
implementation
of the resource
lifecycle
manager can
get reused

-, aspects must have
knowledge with
regards to when and
how resources are
acquired or released;
pointcuts are hard to
define

replace existing
acquisition and
release calls with
around advices

Policy
Enforcement
Point

Isolate policy enforcement
to a discrete component of
an information system;
ensure that policy
enforcement activities are
performed in the proper
sequence.

consistent
enforcement of
security policies;
domain: security

+++; localizes policy
related activities to one
point

+++, guarantees
uniform policy
handling

+++, strategy easily
exchangeable

- only transparent
with additional
framework
support

+++ ++ policy
enforcement could be
made transparent

introduction and
before advices

