
© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 1

Software &
Engineering
Architecture

eXtreme Programming in Open-Source and
Distributed Environments

Michael Kircher
Siemens AG, Corporate Technology
Michael.Kircher@mchp.siemens.de

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 2

Software &
Engineering
Architecture

Outline

• Motivation

• Adaptation of XP

• Distributed Projects
• Open-Source Projects
• Large Projects

• Examples
• ACE & TAO
• Web-based IDE

• Patterns as the Metaphor

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 3

Software &
Engineering
Architecture

Motivation

• Increasing number of projects are geographically distributed
• Financial consideration
• Personal reasons of team members
• No SW development process fully addresses distribution aspects

• Extra documentation does not help
• Does not increase communication efficiency
• Actually, increases communication overhead

• No two such projects are identical
• Processes by the book are always templates of what actually goes on

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 4

Software &
Engineering
Architecture

Traditional processes

• Many traditional processes seem to focus more on
intermediate specifications, than they do on the result

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 5

Software &
Engineering
Architecture

• Strengthen direct communication

• Strengthen trust within your team and with your customer

Reducing extra documentation

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 6

Software &
Engineering
Architecture

Why many HW managers fail in SW
development …

• Many managers believe software can be managed in the same
way hardware is managed

• Manufacturing of HW is well known - technology changes very
slowly

• ‘Manufacturing’ of SW is supposed to be well known – but
technology changes rapidly

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 7

Software &
Engineering
Architecture

Why eXtreme Programming?

• Traditional processes have two flaws:
• “If you plan well enough everything will be going well.”
• “You can prepare for late changes in large system development.”

• Reduce risk from early on
• Produce high quality software
• Keep your programmers happy
• Keep your customer happy
• Be prepared for change
• Speed-up development

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 8

Software &
Engineering
Architecture

eXtreme Programming

What is XP?

• Values, Principles, and Practices …

• Exciting names: ‘Agile Methodology’

• Better to speak of:
• XP-influenced processes [Fowler]

Did you know?

• XP is good enough to reach CMM level 3 [Beard]

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 9

Software &
Engineering
Architecture

Adaptation of XP

• Are we allowed to adapt XP?
• Quote: “You are only doing XP, if and only if you do the twelve

practices, not more and not less.”

• Every project is special
• Distributed projects
• Open-source projects
• Large projects

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 10

Software &
Engineering
Architecture

Distributed Projects

• Why Distributed Projects?
• Constrained by situation

• Multi-site projects with distributed team members

• Individual constraints
• Personal commitments such as doing childcare at home

• Cost
• Outsourcing can be much cheaper

• Mobility
• Team members stay in contact while traveling

• Search for SW processes which are designed to support
distributed development teams

• No process specifically addresses this.
• Can XP be applied in such projects?

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 11

Software &
Engineering
Architecture

Distributed Projects

Adapting XP to Distributed Projects:

• Distributed eXtreme Programming (DXP)

• Team members can be highly mobile as well as arbitrarily far apart

• Applies XP values and principles

• Adapts XP practices to a distributed team environment

• Relaxes the assumption of close physical proximity of team members

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 12

Software &
Engineering
Architecture

Testing

Simple Design

Metaphor
Small Releases

Planning Game

On-Site Customer
Continuous Integration

Refactoring
Collective Ownership

40-Hour Week
Coding Standards

Pair Programming

Problem: XP practices assuming close physical proximity

Distributed eXtreme Programming

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 13

Software &
Engineering
Architecture

Remote access to integration machinesContinuous
Integration

‘Virtual’ on-site customer via
videoconferencing and application sharing

On-site Customer

Application/Desktop sharingPlanning Game

Videoconferencing, application sharing and
personal familiarity

Pair Programming

Solution: Bypass physical proximity.

Distributed eXtreme Programming

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 14

Software &
Engineering
Architecture

Distributed eXtreme Programming

Challenges:

• Communication
• Regular in-person meetings

• Coordination
• Schedules, videoconference appointments

• Infrastructure
• Interoperability, common configuration

• Availability
• Simple rules, consider time zones

• Management
• Regular communication, trust

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 15

Software &
Engineering
Architecture

Distributed eXtreme Programming

Opportunities:

• Integration of team members facing constraints
• Convenient customer involvement

• E.g. customer need not necessarily be on-site all the time

• Mobility
• E.g. team members stay in contact while traveling

Pitfalls:

• Missing trust
• People do not like to share
• Communication overhead too high
• Inappropriate infrastructure

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 16

Software &
Engineering
Architecture

DXP Requirements:
• Connectivity

• e-mail,videoconferencing, application sharing

• Configuration management
• Familiarity among team members
• Motivation of the team members and strong support of each

other
• Tolerance for problems while videoconferencing, e.g. poor

quality, disconnection, jitter

Lessons Learned:
• It works – but not as effective as having physical proximity
• Extends the range of XP

Distributed eXtreme Programming

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 17

Software &
Engineering
Architecture

Open-Source Projects

Built-in XP entities:

• Collective code ownership
• Coding standards are a must!

• ‘Embrace change’ as the basic motivation
• Rapid feedback is a natural consequence

Problem:

• Loosely coupled development team as team members join in
from all over the world via Internet

• Always distributed, as users/developers are distributed
• Distinction between business and development is blurred
• Many developers, with varying involvement and commitment

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 18

Software &
Engineering
Architecture

Open-Source Projects

Solution:

• Coding Standards and tests are enforced by a gatekeeper

• Core team ensures main XP practices, like small releases and
simple design

• Tight feedback cycle via active encouragement and reward

• Well-maintained e-mail lists with fast responses (feedback)

• Application of DXP for distribution aspects

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 19

Software &
Engineering
Architecture

Large Projects

• Some software cannot be built by a small team in a reasonable
time frame.

• Many features
• High complexity, need for various specialists

Problem:

• High communication overhead, as no longer everybody can
talk to everybody else

• Coordination gets very hard
• Often geographically distributed
• Developer base changes over time

• Staff turnover, loss of competencies

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 20

Software &
Engineering
Architecture

Large Projects

Solution:

• Establish a core team and several peripheral teams

• Core team starts first and acts as a proxy customer

• Make sure to establish XP at local sites

• Use DXP practices to interconnect teams

• Easy to follow development process

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 21

Software &
Engineering
Architecture

Large, Open-Source, Distributed Projects:

• ACE - Adaptive Communication Environment
• Object-oriented network programming toolkit

• TAO - The ACE ORB
• CORBA 2.4 compliant Object Request Broker (ORB) implementation

Large ProjectsExample 1: ACE & TAO

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 22

Software &
Engineering
Architecture

Challenges:

• Coordination of 600+ users with various involvement
• Distinction between business and development is blurred

• The core team is tied between both roles

• Framework development
• How to be simple if you need to cover many use cases?

• High quality software for mission-critical computing

Supporting facts:

• Open-source provides a tight feedback cycle with the user
community

• Open-source is based on collective code-ownership

Example 1: ACE & TAO

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 23

Software &
Engineering
Architecture

Solution:
• Gatekeeper for controlling contributions from user community

• Use Bugzilla database and Problem-Report-Forms as story
cards

• Flexibility regarding communication
• Mailing lists for overhearing conversations
• E-Mails
• Core team uses pair programming supported by Diet CokeTM and Pizza

• Real-life applications test weekly beta kits

• Framework development:
• Leanness is not necessarily a virtue
• Using standard APIs as advantage instead of a limitation

Example 1: ACE & TAO

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 24

Software &
Engineering
Architecture

Example 2: Web-based IDE

Web-based Integrated Development Environment:

• Web-Browser as front end
• Desktop sharing integrated
• Videoconferencing integrated
• Configuration management integrated

Goal:

• Tool for Distributed eXtreme Programming
• Integration of mobile and remote team members
• Better (off-site) customer involvement
• ‘Pair-programming everywhere’

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 25

Software &
Engineering
Architecture

Example 2: Web-based IDE

Set-up:

©1 9 94 Den eb a Sy stem s,
Inc .

©1 99 4 De ne ba Sys te ms ,
Inc .

© 1994 Deneba Sys tem s,
Inc.

© 1994 Deneba Systems,
Inc.

Prashant
Delhi,
Notebook,
Dial-up < 32kBit

Michael
Munich,
Notebook,
ISDN

Angelo
Catania,
Notebook,
Dial-up < 56 kBit

David
Pittsburgh,
Desktop PC,
T1

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 26

Software &
Engineering
Architecture

Lessons Learned:

• Communication was quite effective
• However, it cannot fully replace physical proximity

• Configuration management is essential
• No major problems in using application sharing and

videoconferencing
• Bandwidth was mostly sufficient for application sharing and voice

channel; video requires at least 64kB/s

Future:

• Bigger need for DXP as development cycle times and budgets
shrink

Example 2: Web-based IDE

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 27

Software &
Engineering
Architecture

• What is the metaphor in XP?
• “The system metaphor is a story that everyone – customers,

programmers, and managers - can tell about how the system works.”
[Kent Beck]

• Weakly defined, a lot of room for (mis-)interpretations.

• What is the benefit?
• Team speaks a common, precise language
• Avoid misunderstandings
• Establish a common vision

• What are the limits?
• Some projects don’t offer good metaphors.
• Being too entrenched, not open to different/cross-cutting approaches

XP Practice: Metaphor

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 28

Software &
Engineering
Architecture

Patterns as the Metaphor

• In some projects it seems impossible to come up with a shared
story, e.g.

• In framework development, as the target domain might be well suited.
• Implementing standard APIs, e.g. CORBA

• Basic idea:
• "XP is an effective means of communication".
• "Patterns are effective communication".

• Patterns and Pattern Languages exist as a common language
between developers.

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 29

Software &
Engineering
Architecture

Patterns as the Metaphor - Example

• Patterns used in the Real-Time CORBA Object Request Broker
TAO

• “We need to enhance the implementation of the Leader/Follower model
with a new strategy.”

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 30

Software &
Engineering
Architecture

Patterns as the Metaphor

• Patterns are used to communicate …
• Architecture, overall responsibilities and relationships
• Design, interaction between collections of classes

• Allow for reusable, and expandable designs

• Implementation idioms, e.g., guarded locking

• Though they …
• Require that everybody knows how to speak the common language
• Might be of less use in communication with the customer
• Might not be simple enough - might be too abstract to new programmers

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 31

Software &
Engineering
Architecture

XP in Large Companies

• Very cautious usage – Not Invented Here Syndrome

• ‘Process people’ don’t embrace it
• “Isn’t it about programming?” L

• Developers have to do it in storerooms.

• How to get started?
• Teams implementing subsystems have about the right size
• Take the best and mix it with your traditional methodology – but

carefully.

• Start small and learn driving

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 32

Software &
Engineering
Architecture

Other Adaptations

• Adaptation [Collins]
• Treat XP “by the book” as your training wheels.
• Constantly, introspect and retrospect

• Scaling of XP [Crocker]
• Loosely coupled teams
• Team coordination layer

• Scaling down - Micro-XP [Adrian]
• Scaling down to a single person
• Sacrifice pair programming and collective code ownership

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 33

Software &
Engineering
Architecture

XP as a Management Philosophy

• Manage with the XP “mind-set”

• Learn from you employees

• Get quick feedback from your project

• Communicate your visions early

• Start implementing instead of discussing and planning

• Formulate simple, clear goals

• ‘Break Through Strategy’ [Schaffer]
• Try out and verify early to further deploy

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 34

Software &
Engineering
Architecture

References

• M. Kircher, P. Jain, A. Corsaro, and D. Levine, Distributed Extreme
Programming, XP2001, Italy, May 21-23, 2001

• Jim Highsmith, Agile Methodologies, XP 2001, Italy, May 21-23, 2001
• Agile Alliance, http://www.agilealliance.org, 2001
• M. Kircher, D. Levine, The XP of TAO, 1st International Conference on

eXtreme Programming and Flexible Processes in Software
Engineering, Cagliari, Italy, June 21-23, 2000

• F. Adrian, micro-eXtreme Programming (mXP): Embedding XP Within
Standard Projects, XP2001, Italy, May 21-23, 2001

• R. Crocker, The 5 reasons XP can’t scale and what to do about them,
XP2001, Italy, May 21-23, 2001

• M. Fowler, Variations On a Theme of XP, http://www.martinfowler.com,
2001

• R. Schaffer, Breakthrough Strategy, Harper Business, 1988
• G. Succi, M. Marchesi, Extreme Programming - Examined, Addison-

Wesley, 2001
• C. Beard, A look at Extreme Programming, SEPG 2001, New Orleans,

March 14, 2001

© Siemens AG, CT SE, Michael Kircher 10.09.2001

s

C
 O

 R
 P

 O
 R

 A
 T

 E

T
 E

 C
 H

 N
 O

 L
 O

 G
 Y

JAOO 2001 35

Software &
Engineering
Architecture

Thank you for listening.

Any questions?

Always remember:
Do the simplest thing that could possibly work ;-)

