
Enterprise meets Embedded

 Michael Kircher Christa Schwanninger
 Siemens AG Siemens AG
 Otto-Hahn-Ring 6 Otto-Hahn-Ring 6
 81739 Munich 81739 Munich
 Germany Germany
 michael.kircher@siemens.com christa.schwanninger@siemens.com

ABSTRACT
In this position paper we give a brief overview of existing
technologies and concepts that play a role in reuse for
constrained environments. We start of with considerations
about reuse, continue with typical limitations in embedded
systems and conclude with a set of contemporary
technologies and concepts that support reuse in constrained
environments.

Keywords
Reuse, Patterns, Frameworks, Components, Aspect
Oriented Programming.

1 INTRODUCTION
Embedded devices hold more and more software, systems
get connected and the demand for ever increasing
functionality in small devices forces the vendors to shorter
than ever development cycles. The requirements of
software for embedded systems can only be fulfilled if
reuse is made possible – something we struggle for in
enterprise software since at least the middle 1980ties. Can
we simply transfer the concepts from enterprise to
embedded systems? We think this can be done - if we are
aware of the constraints.

2 REUSE
The concept of reuse can be applied in two ways:

• Architecture – Architectural reuse means the reuse
of the structure of separated responsibilities and
their interaction patterns, e.g. three-tier
architectures.

• Source code – Source code reuse encompasses
libraries and generated code. Reuse by cut and
paste is usually not desirable.

The two ways of reuse are supported in various
combinations by the following well known concepts:

• Architectural patterns foster reuse at a purely
architectural level. Some of the most prominent
examples of architectural patterns are the Layers
pattern [POSA1], as used in every protocol stack,
and the Microkernel pattern [POSA1], e.g.
implemented in embedded operating systems and
middleware products.

• Frameworks support reuse at the architecture and

source code level. They take influence on the
architecture by imposing a certain control flow on
the application. Prominent examples are AWT as
GUI framework and ACE [Schm03] as network
programming toolkit.

• Components that encapsulate application
functionality are typically implemented and reused
as libraries, but don’t impose any architecture. To
keep components independent from the
application infrastructure, the infrastructure
services are factored out, potentially in
components as well. In enterprise systems
component containers implement these
infrastructure services. But in embedded systems
component technologies such as J2EE or the
CORBA Component Model [OMG03] are too
heavy weight. Instead customized solutions,
closely related to domain specific languages, are
used; see also [Contribution by M. Voelter].

• Another way of code reuse is libraries that group
related functionality, such as mathematical
functions or operating system wrapper facades
[POSA2].

Aspect Oriented Programming (AOP) [Kicz97] is
orthogonal to these concepts. It supports the encapsulation
of responsibilities that cut across the modularization
artifacts like functions or objects. This additional
modularization capability fosters reuse, since only
components not “polluted” with functionality that is only
valid in a certain context can be reused without change.
The aspect oriented term for this kind of pollution is
“tangling”, which means that several concerns are
implemented within one piece of code.

On the other hand, since aspect orientation allows the
implementation of the crosscutting concern in a single
module, the crosscutting concern’s implementation also can
be reused.

Aspects get woven into the base code at pre-compile, load
or runtime. They make application independent component
development possible, like component models do, since
they allow to add infrastructure services without changing
the component’s code manually.

mailto:michael.kircher@siemens.com
mailto:christa.schwanninger@siemens.com

 2

3 CONSTRAINED ENVIRONMENTS
The focus of this workshop has been quite broad regarding
the definition of a constrained environment. Typical
constraints of a software system are

• Memory footprint – Mass produced devices save
on memory because every cent saved on hardware
is a million more in earning.

• CPU cycles – CPU cycles are scarce because the
faster a CPU is, the more energy is consumed.

• Communication bandwidth – The communication
means in embedded devices have to be redundant
and highly available, this leads to restricted
communication bandwidth.

• Timing requirements – Mission and safety critical
applications impose strict requirements regarding
timing.

• Robustness – Embedded devices often have to
work reliably under rugged conditions.

The constraints are typically non-functional requirements
(hard real-time not considered), mostly derived from the
limited availability of resources and Quality of Service
considerations.

All environments have to cope with constraints. While
enterprise systems mainly have to deal with scalability
issues at various levels, embedded systems are heavily
influenced by stringent resource availability. In
contemporary software development projects, embedded
systems increasingly make use of enterprise technologies
such as object orientation and component technology, while
enterprise systems start to adopt model driven architecture
approaches, which have a long time history in embedded
systems.

4 SOLUTION PROPOSAL
For the purpose of this workshop we limit our discussion
on embedded systems, as they typically have more
constraints than enterprise systems.

Going back to our list in section 2, the following concepts
foster reuse in embedded systems:

• Architecture reuse is possible without limitations.
The mentioned Layers and Microkernel patterns
are well suited.

• Frameworks have to be highly customizable for
embedded systems to avoid memory consumption
by unused functionality. Design patterns such as
Strategy [GoF], Bridge [GoF], Visitor [GoF] help
to design for adaptability and flexibility. Both are
necessary for efficient reuse.

• Components can be used as a concept, but
resource intensive container frameworks are too

heavy weight. Code generation can help to reduce
the container functionality to what is actually
needed.

• AOP can be used as technology to help to
implement customizable component models.
Crosscutting container functionality has to be
implemented as aspects; the weaver generates the
application from functional components and
aspects.

• Resource management patterns [POSA3] cope
with the reuse of system resources at system
runtime. They describe when to acquire and when
to release system resources, such as memory,
threads, communication connections, and the like.

5 CONCLUSION
In this paper we gave a brief overview over contemporary
concepts that support reuse, but not all of them are
applicable in constrained environments, yet. Generally it
can be said: technologies that substantially increase the
runtime overhead or memory footprint are not applicable.
Nevertheless, enterprise technologies such as component
models and AOP are on their way to pervade the embedded
domain.

REFERENCES
[GoF95] E. Gamma, R. Helm, R. Johnson, J. Vlissides,

Design Patterns-Elements of Reusable Object-Oriented
Software, Addison-Wesley, 1995

[Kicz97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda and C. Lopes, J.-M. Loingtier, and J. Irwin.
Aspect Oriented Programming. In Proc. of European
Conference on Object-Oriented Programming
(ECOOP), Lecture Notes in Computer Science Vol.
1241, pp. 220-242, 1997.

[OMG03] Object Management Group, CORBA
Component Model Specification,
http://www.omg.org/technology, 2003

[POSA1] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerland, and M. Stal, Pattern-Oriented Software
Architecture-A System of Patterns, John Wiley and
Sons, 1996

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F.
Buschmann, Pattern-Oriented Software Architecture-
Patterns for Concurrent and Distributed Objects, John
Wiley and Sons, 2000

[POSA3] M. Kircher, P. Jain, Pattern-Oriented Software
Architecture-Resource Management and Optimizations,
John Wiley and Sons, 2004

[Schm03] D. C. Schmidt, Adaptive Communication
Environment (ACE),
http://www.cs.wustl.edu/~schmidt/ACE.html, 2003

	ABSTRACT
	Keywords

	INTRODUCTION
	REUSE
	CONSTRAINED ENVIRONMENTS
	SOLUTION PROPOSAL
	CONCLUSION
	REFERENCES

