L easing

Prashant Jain & Michael Kircher
{Prashant . Jai n, M chael . Ki rcher} @thp. si enens. de
Siemens AG,

Munich, Germany

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



L easing

The leasing pattern simplifies resource management by specifying how
resource users can get access to a resource from aresource provider for a
pre-defined period of time.

Example  Consider a system consisting of several distributed objects implemented
using CORBA [OMG]. To allow clientsto accessthese distributed objects,
the server containing these objects typically publishes the references of
these objects in a Lookup Service [LOOKUP] such as a CORBA Name
Service [NS]. Clients can then query the Lookup Service to obtain
references to these objects. For example, consider a distributed Quoter
service object registered with the CORBA Name Service. The Quoter
service would provide stock quotes to any clients that connect to it. A
client would typically query the Name Service, obtain a reference to the
Quoter service, and then communicate directly with the Quoter service to
obtain stock quotes.

query

object
refere
&

publish

object Quoter E
reference i
I\ Service =
E
/ —

Consider what would happen if the server containing the Quoter service
were to crash and never come back up. The Quoter service would no
longer be available but its reference would never get removed from the
Name Service. This can create two problems. First, clients would still be
able to obtain a reference to the Quoter service from the Name Service.
However, the reference would be invalid and therefore any requests sent
by the clients would typically result in an exception being thrown.

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



Leasing 3

Secondly, lacking any explicit means to remove the invalid object
reference, over a period of time unused resources such as invalid object
references would continue to build up at the Lookup service.

Context Systems where resource usage needs to be controlled to allow timely
release of unused resources.

Problem Highly robust and scalable systems must manage resources efficiently. A
resource can be of many types including local as well as distributed
services, database sessions and security tokens. In atypical use case, auser
retrievestheinterface of aresource provider and then asksthe provider for
one or more resources. Assuming the provider grantsthe resource, the user
can then start using the resources. However, over aperiod of time, the user
may no longer require some of these resources. Unless the user explicitly
terminates its relationship with the provider and rel eases the resources, the
unused resources would continue to be needlessly consumed. Thisin turn
can have a degrading effect on performance of both the user and the
provider. In addition, it can also affect resource availability for other users.

In systems where the resource user and the resource provider are
distributed, it is also possible that over a period of time the provider
machine may crash or that the provider may no longer offer some of its
resources. Unless the user is explicitly informed about these resources
becoming unavailable, the user may continue to hold invalid resources.

The net result of al of thisisabuild up of resources on the user side that
may never get freed. One solution to this problemis to use some kind of a
monitoring tool that could periodically check a user’s resource usage as
well as the state of the resources used by the user. The tool could then
recommend to the user possible resourcesthat can be freed. However, this
solution is both tedious and error-prone. In addition, a monitoring tool
may also hinder performance. To solve this problem in an effective and
efficient manner requires resolving the following forces:

« Smplicity: the management of resources for auser should be simple by
making it optional for the user to explicitly release the resources that it
no longer needs.

» Availability: resources not used by a user, or no longer available should
be freed as soon as possible to make them available to new users. For
example, resources associated with a network connection should be
released once the connection is broken.

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



e Optimality: the system load caused by unused resources must be
minimized.

 Actuality: auser should not use an obsol ete version of aresource when
anew version becomes available.

Solution Introduce a lease for every resource that is held by a user. A lease is
granted by a grantor and is obtained by a holder. A lease grantor is
typically the resource provider while a lease holder is typically the
resource User.

A lease specifies a time duration for which the user can use the resource.
Once the time duration elapses, the lease is said to have expired and the
corresponding resource is freed from the user. While alease is active, the
lease holder can cancel theleasein which case the corresponding resource
isalso freed from the user. Before alease expires, the lease holder can try
to renew the lease from the lease grantor. If the lease is renewed, the
corresponding resource continues to be available.
Structure  The following participants form the structure of the Leasing pattern:

A resource provides some type of functionality or service.

A lease provides a notion of time that can be associated with the
availahility of aresource.

A grantor grants alease on aresource.

A holder obtains alease on aresource and then uses the resource.

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



Leasing

The following CRC cards describe the responsibilities and collaborations

of the participants.t

Class Collaborator Class Collaborator
Resource Lease e Grantor
Responsibility Responsibility
* Provides application  Specifiesatime period
functionality for which aresourceis
available
* Informs the grantor on
lease expiration
Class Collaborator Class Collaborator
Grantor e Holder Holder * Resource
Responsibility * Lease Responsibility * Lease
+ Grantsaleaseonare- « Obtainsandmaintainsa | * Grantor
source to the holder lease
e Usesaresource
* (Optionaly) renewsthe
lease

Implementation ~ There are four stepsinvolved in implementing the Leasing pattern.

1 Determine resources to associate leases with. A lease should be
associated with any resource whose availability is time-based. This
includes resources that are short-lived, resources that are not used
continuously by users, and resources that get updated frequently with
newer versions.

2 Determine lease creation policies. A lease is created by the lease
grantor for every resource used by auser. If aresource can be shared by
multiple users, multiple leases will be created for the resource. A lease
can be created by the lease grantor using a Factory [GHJIV95]. Lease
creation requires specifying the duration for which the lease is to be

1. Class-Responsibility-Collaborators (CRC) cards [BRJ98] help to identify and specify
objects or the components of an application in an informal way, especially in the early phases
of software development. A CRC-card describes a component, an object, or a class of
objects. The card consists of three fields that describe the name of the component, its
responsibilities, and the names of other collaborating components.

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



granted. The duration may depend upon the type of resource, the
requested duration and the policies of the lease grantor. The lease
reguestor and the lease grantor may negotiate the duration for which the
lease should be granted.

A user of a resource may want to pass the resource along with the
associated lease to another user. The lease creation policies can be used
to specify whether thisis supported or not. If aresource along with its
corresponding leases can be passed to other users, then the |ease needs
to provide operations allowing its ownership to be changed.

Once alease has been created, the grantor needs to maintain amapping
between the lease and the corresponding resource. This allows the
grantor to keep track of the duration of time for which the resource is
being used and to determine which resources are still available for
which new leases can be granted.

In addition, if the notification of users has to be supported a mapping
of the lease to the corresponding user is necessary.

3 Determinelease responsibility. If alease can berenewed, it needsto be
determined who is responsible for renewing it. A lease may
automatically renew itself or the renewa process may require re-
negotiation between the grantor and the holder. A re-negotiation of the
lease may result in new policies for the lease including the duration for
which the lease is renewed.

4 Determine lease expiration policies: Once a lease expires and is not
renewed, the resource assoicated with it needs to be released. This can
be done automatically or may require some intervention on part of the
user. Similarly, the lease grantor needs to remove the mapping between
the lease, the resource and the user. Typically, the lease contains some
kind of an Asynchronous Completion Token [POSA2] with
information about the holder which it uses to alow proper cleanup in
the grantor when the lease expires.

Example Resolved Consider the example where a distributed Quoter service object needs to
be available to CORBA clients. The server containing the Quoter service
object would typically register the object with a CORBA Name Service.
The Name Service would therefore be a resource provider while the
resource will be the registration of the service object reference. The server
containing the Quoter service object would be the user of the resource. The
server and the Name Service would negotiate the lease details including

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



Leasing 7

the duration for which the Quoter service object reference needs to be
registered as well as policies regarding renewal of the lease. Once the
negotiations are completed, the Name Service would register the Quoter
service object reference with it and create a lease for the agreed-upon
duration of time. The Name Service will be the lease grantor while the
server will be the lease holder.

While the lease has not expired, the Name Service will keep the Quoter
service object reference and make it available to any clientsthat request it.
Once the lease expires, the server may need to explicitly renew the lease
to indicate a continued interest in making the Quoter service object
reference available to clients. If the server does not renew the lease, the
Name Service will automatically remove the Quoter service object
reference and release any additional resources associated with it.

The C++ code below shows how a server can register a Quoter service
object reference with the Name Service. In the example below, the
LookupSer vi ce provides awrapper around the Name Service, so that
the standardized interface of the CORBA Name Service need not be
changed. The LookupSer vi ce serves as alease grantor.

/1 First initialize the ORB
CORBA: : ORB_var orb = CORBA:: ORB_init(argc, argv);

/] Create a Quoter service
Quoter _I npl *quot er Servant = new Quoter_I npl;

/1 Get the CORBA object reference of it
Quot er _var quoter = quoterServant->_this();

/1l Get hold of the | ookup service which is al so
/1 the | ease grantor
CORBA: : Obj ect _var obj = orb->

resolve_initial _references(“LookupService”);

/'l Narrow the reference

Lookup: : LookupServi ce_var | ookupService =
Lookup: : LookupService:: _narrow(obj);

/1l Create an object specifying desired |ease

/1 duration

Ti meVal ue | easing_tinme (TinmeVal ue:: SECONDS, 10);

Lookup: : Lease_var | ease;

try {
/1l Register the Quoter object reference with

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



/'l the Lookup service
| ease = | ookupServi ce->bi nd( nane,
quoter,
| easing_tine);
} catch (Lookup:: Negoti ate)

| easing_time = Lookup:: Ti meVal ue
(Ti meVal ue: : SECONDS, 5);
// ... try again until you get a | ease

}

/1 .. do other things

/!l Renew lease if we are still interested in
/1 publishing the object reference
| ease->renew (Ti neVal ue (Ti neVal ue: : SECONDS, 30));

Thefollowing code shows how the LookupSer vi ce wrapsthe CORBA
Name Service. After checking for an acceptable time period and creating
a corresponding lease, the actual binding is delegated to the name service.

cl ass LookupServi ce_i npl
publ i c POA_Lookup:: LookupService {
publi c:

...

Lease_ptr bind (const CosNami ng:: Name &name,
CORBA: : Obj ect _ptr obj ect,
const TineValue &ine) {

if (this->time_is_acceptable (tine)) {
/'l Create a new | ease
Lease_I npl *l|ease_inmpl =
new Lease_ I nmpl (tine,
this->_this(), nane);
/1 Get the CORBA object reference
LookupServi ce: : Lease_var | ease =
| ease_inpl->_this ();

// Add the new | ease to our cache
t hi s->add_| ease (| ease, object);

/1 Del egate
nanmeServi ce_->bi nd (nane, object);
return | ease->_retn ();

el se {
/1 Reject the bind request
t hrow (Lookup:: Negoti ate);

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



Leasing

voi d unbi nd (const CosNani ng:: Name &nane) {

}

/! Delegate to the NS

nameSer vi ce_->unbi nd (namne);

/1 Do any other clean up required
/1 including updating the cache
/1l ... code onmitted ...

Ti meVal ue& renegoti ate

I

(LookupService: : Lease_ptr |ease,
const TinmeVal ue &ine) {
/1 Renegotiate | ease. Code ommitted.

The following code shows how a lease could be implemented. Note that
the Reactor pattern [POSAZ2] is used for the notion of timers. Therefore,
the Lease_i npl class implements not only the Lease interface but
alsotheRReact or : : Event Handl er interface. Thisallowstheleaseto
register itself with the reactor to receive timeouts.

cl ass Lease_inpl
publ i c POA Lookup::Lease, Reactor::EventHandl er

L
public:
Lease_i npl (const TineValue &time,

Lookup: : LookupServi ce_ptr | ookupServi ce,
const CosNani ng: : Name &nane)

time_ (tine)

| ookupServi ce_(| ookupServi ce)

name_ ( nhane)

reactor_ (Reactor::instance ())

valid_|l ease_ (TRUE) {};

/1 Renew the | ease for the given tine
voi d renew (const TinmeValue &ine) {

/'l Renegotiate the | ease with the grantor
try {
time_ = | ookupService_->renegotiate
(this->_this (), tinme);
/! Reschedule timer with the reactor
/1 for the duration of the |ease
reactor_->unregister_timer (this);
reactor_->register_timer
(time, this);
} catch (...) {
/1 Error Handling

Copyright © 2000, Prashant Jain and Michael Kircher

25.04.2001 Leasing.fm



10

Variants

}

/1 Cal | back method

void on_timer_expire () {
| ookupSer vi ce_->unbi nd (nane_);
val i d_| ease_ = FALSE;

}

/1 Method called by the | ease hol der to cancel

/'l a |ease.

voi d cancel () {
/1 Cancel timer with the reactor
reactor_->unregister_timer (this);
this->on_tiner_expire ();

}
/1

b
When the lease duration expires, the reactor calls back the method
on_ti mer _expi r e whichin turn cleans up the appropriate resources.

Specific lease creation and expiration policies can yield various variants
to the Leasing pattern. A lease may be created with the policy to
automatically renew itself when its duration expires. In this case the lease
maintains enough information about the holder and the grantor to
automatically renew itself when its duration of time expires. Automatic
renewals with short lease durations are preferrable over a single longer
lease since each |ease renewal gives the opportunity for the lease holder to
update the resource it holds if the resource has changed. A further
variation to this could be to limit the number of automatic renewals based
on some negotiation between the lease grantor and the lease holder.

The renewal of alease need not be done automatically by the lease or by
the lease holder; instead, it can be done by a separate object. This can free
the lease holder from the responsibility of renewing leases when they
expire.

A lease may be created with no expiration. In this case, the holder must
cancel the lease explicitly when it no longer needs the resource associated
with the lease. This variant, however, loses many of the benefits of using
the Leasing pattern but allows integration of legacy systems where the
notion of leasing cannot be introduced easily.

Copyright © 2000, Prashant Jain and Michael Kircher

25.04.2001 Leasing.fm



Leasing 11

Callbacks can be used to inform lease holders about expiring leasesto give
them a chance to renew those leases. This can help lease holders who do
not want to or are not capable of determining when alease will expire.

The Leasing pattern allows invalid resources such as object references to
be released in a timely manner. The pattern can be extended using
Invalidation [YBS] to alow invalid resources to be released explicitly. If
a resource becomes invalid, the resource creator could send an
invalidation signal to the lease grantor which could then propogate the
signal to al the lease holders. The lease holders could then cancel the
leases alowing the resource to be released. Note that Invalidation can
result in additional complexity and dependencies between the resource
creator, the lease grantor and the lease holders. It should therefore only be
used when it is not sufficient to wait for the lease duration to expire and
instead it is necessary to rel ease resources as soon as they become invalid.

KnownUses + Jini™ - Sun'sJini™ technology makes extensive use of the Leasing
pattern by using it in two ways. First, it couples each service with a
lease object that specifiesthe duration of timefor which aclient can use
that service. Once the lease expires and the client does not renew the
lease, the service corresponding to the lease object is no longer
available to the client. Second, it associates a lease object with each
registration of a service with the Jini™ Lookup Service. If a lease
expires and the corresponding service does not renew the lease, the
service is removed from the Lookup Service.

» Software licenses - A software license can be regarded as a lease
between the software and the user. A user may obtain alicensefor using
aparticular software. The license itself may be obtained, for example,
from alicense server and is usually for a set period of time. Once the
period of time expires, the user must renew the license or else the
software can no longer be used.

* Dynamic Host Configuration Protocol - The purpose of DHCP isto
enable individual computers on an IP network to extract their
configuration settings from a server known as the 'DHCP server'. The
motivation behind thisis to reduce the work necessary to administer a
large 1P network. The most significant piece of information distributed
in this manner is the |P address. In that context a DHCP lease is the
amount of time that the DHCP server grants permission to the DHCP

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



12

client to use a particular IP address. The lease time is typically set by
the system administrator.

» FileCaching- Some netowork file systems such as SODA [KM95] use
leases as extensions to traditional protocols such as NFS in order to
assure the consistency of cached information in distributed systems.

» Magazine/Newspaper subscription - A real world known use of the
Leasing pattern is magazine and newspaper subscriptions. In this case,
the subscription represents the lease which usualy expires after a set
period of time. The subscription must be renewed by the subscriber or
€l se the subscription terminates. In some cases, the subscriber may set
up automatic renewal, for example by providing bank account
information or credit card information.

* Web-based email accounts - Many web-based email accounts, for
example MSN Hotmail, accounts if not used for more than a certain
period of time become inactive automatically. In this case, the duration
of time can be regarded as a lease whose renewal requires use of the
email account.

Consequences  There are several benefits of using the Leasing pattern:

Resource Management Smplicity: The Leasing pattern simplifies the
management of resources for the user. It frees the user of aresource from
the responsibility of releasing the resource explicitly. Once the lease on a
resource expires and is not renewed by the user, the resource can be
automatically released.

Effecient Resource Usage: A resource provider can control resource usage
more effeciently through time-based leases. By bounding resource usage
to a time-based lease, the resource provider can ensure that unused
resources do not get wasted and are instead released as soon as possible
alowing them to be granted to new users. This can lead to the overall
system load caused by unused resources to be minimized.

Resource Update Smplicity: The Leasing pattern allows older versions of
resources to be replaced with newer versions with relative ease. The
resource provider can supply the resource user with a new version of a
resource at the time of |ease renewal.

Enhanced System Reliability: The Leasing pattern helps to increase
system reliability by reducing the wastage of unused resources and by
ensuring that resource users do not access invalid resources.

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



Leasing 13

There are some liabilities of using the Leasing pattern:

Additional Overhead: The Leasing pattern requires an additional object in
the form of alease to be created for every resource that is granted by a
provider to a user. Creating a pool of lease objects and re-using them with
different resource allocations can help ssimplify this problem. In addition,
on lease expiry, the lease grantor may need to send a notification to the
lease adding additional overhead.

Additional Application logic: The Leasing pattern requires the application
logic to support the concept of leases as the glue between the roles of
resource providers and resource users. Application architects therefore
need to design keeping in mind that resources are not unlimited and that
they are not available all the time.

Timer Watchdog: The resource provider as well as the resource user need
to be able to determine when alease will expire. This requires support for
some kind of a timer mechanism which may not be available in some
legacy systems. If, however, the legacy systems are event-based
applications then they can be made timer aware with very little overhead.

SeeAlso  The most common implementation of the L easing pattern relies on event-
based callbacks to signal lease expiration. An event-based application
typically uses one or more event dispatchers or Reactors [POSAZ2], such
as the Windows™ Message Queue, InterViews' Dispatcher [LC87], or
the ACE Reactor [ACE]. Event dispatcherstypically provide an interface
to register event handlers such astimer handlers which get called on timer
expiration.

In applications which do not contain an event loop, the Active Object
[POSAZ2] design pattern can be used to substitue timer handling. The
Active Object has its own thread of control and can either instrument the
OSor runitsevent loop to signal leases via callbacks on timer expiration.

To make leasing transparent to the resource user the Proxy
[GHJIV9I5] design pattern can be employed. The resource proxy can
handle lease renewals, policy negotiations, and lease cancellations that
would otherwise normally be done by the user. CORBA Smart Proxies
[SMP] provide the appropriate abstraction in the CORBA world while
Smart Pointers are the pendant to thisin traditional C++.

Copyright © 2000, Prashant Jain and Michael Kircher
25.04.2001 Leasing.fm



14

References

[ACE]

[BRJ9S|

[OMG]

[GHIV95]

[JINI]

[KM95]

[LC87]

[LOOKUP]

[NS]

[POSAZ]

[SMP]

[YBS]

Adaptive Communication Environment, http://www.cs.wustl.edw/~schmidt/
ACE.html

G Booch, J. Rumbaugh, I. Jacobsen: The Unified Modeling Language User Guide,
Addison-Wesley, 1998

Object Management Group, http://www.omg.org

E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns — Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

Jini™ Technology, http://www.sun.comvjini

Kon, Fabio and Mandel, Arnaldo. SODA: A Lease-Based Consistent Distributed
File System. Proceedings of the 13th Brazilian Symposium on Computer
Networks, 1995.

M.A. Linton, PR. Cader: The Design and Implementation of InterViews,
Proceedings of the USENIX C++ Workshop, November 1987

P. Jainand M. Kircher, “Lookup Pattern” ,Submitted to European Pattern Language
of Programs conference, Kloster Irsee, Germany, July 5-9, 2000

OMG, Interoperable Naming Service, Document orbos\98-10-11, 2000

D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern-Oriented Software
Architecture—Patterns for Concurrent and Distributed Objects, John Wiley and
Sons, 2000

Smart  Proxies, http://www.cs.wustl.edu/~schmidt/ACE_wrappers/TAO/docs/
Smart_Proxies.html

H. Yu, L. Breslau, S. Shenker, “ A Scalable Web Cache Consistency Architecture”,
Computer Communication Review, ACM SIGCOMM, volume 29, number 4,
October 1999

Copyright © 2000, Prashant Jain and Michael Kircher

25.04.2001 Leasing.fm



