
1

Lookup

Michael Kircher & Prashant Jain

{Michael.Kircher,Prashant.Jain}@mchp.siemens.de

Siemens AG, Corporate Technology

Munich, Germany
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 2
Lookup

The lookup pattern describes how to find and retrieve initial references to distributed
objects and services.

Example Consider a system consisting of several distributed objects implemented using CORBA. To
access one of the distributed objects, a client typically needs to obtain a reference to the
object. An object reference identifies the distributed object that will receive the request.
Object references can be passed around in the system as parameters to operations as well
as results of requests. A client can therefore obtain a reference to a distributed object in the
system from another distributed object. However, how can a client get an initial reference
to an object assuming that it is the first distributed object the client wants to access?

For example, in a system providing distributed transaction service, a client may want to
obtain a reference to the Transaction Manager to be able to participate in distributed
transactions. How can a server make the Transaction Manager object reference that it
created widely available? And how can a client obtain the Transaction Manager object
reference without having a reference to any other object?

Context Distributed systems where clients need to retrieve initial references to distributed objects
or services.

Problem In a distributed system, a server may offer one or more services to clients. Over a period of
time, additional services may get added or existing services may get removed. One way the
server can publish the availability of existing services to interested clients is by periodically
sending a broadcast message. The messages need to be sent on a periodic basis to ensure
that new clients that join the system become aware of available services. Conversely, a
client could send a broadcast message requesting all available services to respond. Once
the client receives replies from all available services, it can then choose the service(s) it
needs. However, both these approaches can be quite costly and inefficient since they
proliferate the network with lots of messages. To address this problem of allowing servers
to publish services and for clients to find these services in an efficient and inexpensive
manner requires the resolution of the following forces:

• Availability: a client should be able to find out on demand what distributed objects or
services are available in its environment.

• Independence: a client should be able to obtain initial references of one or more
distributed objects or services without relying on other unknown distributed objects or
services.

• Location Transparency: a client should be able to obtain initial references of one or
more distributed objects or services without caring about the location of the distributed
objects or services. Similarly, a server should be able to provide references of distributed
objects and services to clients without knowledge of the location of the clients.

Client Transaction
Managernetwork

publish
object
reference

get
object
reference
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 3
• Simplicity: the solution should not burden a client obtaining the initial references of
distributed objects and services nor a server providing the references.

Solution Provide a Lookup service which allows services to register their references and clients to
retrieve these references. The Lookup service serves as a central point of communication
between clients and servers allowing clients to access references of services from the
servers. The clients need not know about the location of the servers or the services they
offer. Similarly, the servers need not know the location of the clients that want to access the
references of the services.

The reference of a service can be associated with properties that describe the service. The
lookup service keeps a list of the registered references and their associated properties.
These properties can be used by the Lookup service to select one or more services based
on queries sent by the client.

To communicate with the Lookup service, the clients and servers need an access point. If
the access point is not known, clients and servers use a bootstrapping protocol to find it.
Typically a broadcast message is sent. The listening Lookup service responds with a
message containing information about its access point.

Structure The following participants form the structure of the Lookup pattern:

A service provides some type of functionality.

A client uses a service.

A lookup service provides the capability for services to register themselves and for clients
to find these services.

The following CRC1cards describe the responsibilities and collaborations of the
participants.

1. Class-Responsibility-Collaborators (CRC) cards M. Stal, Activator Pattern, http://www.stal.de/
articles.html, 2001 help to identify and specify objects or the components of an application in an informal way,
especially in the early phases of software development. A CRC-card describes a component, an object, or a class
of objects. The card consists of three fields that describe the name of the component, its responsibilities, and the
names of other collaborating components.

Class
Lookup Service

Responsibility
• Allows services to be

registered
• Allows client to find

registered services
• Associate properties

with services

Collaborator

Class
Client

Responsibility
• Uses a service

Collaborator
• Service
• Lookup Service

Class
Service

Responsibility
• Provides application

functionality

Collaborator
• Lookup Service
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 4
Dynamics There are two sets of interactions in the Lookup pattern. The first set comprises of
registering a service with the Lookup service and includes the following interactions:

The server creates a new instance of a service.

It then searches for a Lookup service via a bootstrapping protocol, e.g., a broadcast
protocol.

The Lookup service responds announcing its access point.

The server registers the object reference of the service using properties with the Lookup
service.

The second set comprises of a client finding a service using a Lookup service and includes
the following interactions:

• The client searches for a Lookup service via a bootstrapping protocol, e.g., a broadcast
protocol.

• The Lookup service responds announcing its access point.

• The client queries the Lookup service for the object reference of the desired service
using its properties.

• The Lookup service responds with the object reference of the desired service.

• The client uses the object reference to access the service.

: Server

<<broadcast>>

register(properties)

: Lookup Service

<<singlecast>>

object reference

object reference

: Service

<<create>>

: Client : Service

<<broadcast>>

find(properties)

: Lookup Service

<<singlecast>>

object reference
operation ()

object reference
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 5
Implementation There are four steps involved in implementing the Lookup pattern.

1 Determine functionality of a Lookup service. A lookup service should facilitate
registration and lookup of services. It should provide an API that allows services to
register and unregister themselves. Each registered service may provide meta
information about itself that can be used by the lookup service to fetch the appropriate
service upon client request. In the simplest case, the meta information may just contain
the name of the service. Different policies can be defined for the Lookup service. For
example, the Lookup service may support bindings with duplicate names or properties.
The Lookup service should also provide an API that allows clients to retrieve a list of
all available services as well as retrieve a reference to a particular service. The search
criteria used by the clients can be a simple query-by-name or a more complex query
mechanism as described in step 4 of the implementation section.

2 Implement the Lookup service. Internally, the Lookup service can be implemented in
many different ways. For example, it may keep the registered services and their meta
information in some kind of a tree data structure or a hashmap. The information itself
may be transient or can be made persistent with an appropriate backend persistency
mechanism.

For example, Orbix 2000 [IONA] which is a CORBA 2.3 implementation uses the COS
Persistent State Service to persist the name bindings in its Name Service. Other
CORBA implementations such as TAO [TAO] persist the bindings using memory-
mapped files.

3 Provide the Lookup service access point. The lookup service may provide a well-
defined and well-known access point which can be published to the clients. The access
point will typically include information such as the hostname and the port number
where the Lookup service is running. This information can be published to the clients
by several means such as writing it to a file that can be accessed by the client, or through
well-defined environment variables.

For example, a lot of CORBA implementations publish the access point of the
Name Service using property or configuration files which can be accessed by
clients.

If an access point is not provided by the Lookup service, it will be necessary to design a
bootstrapping protocol which can allow clients to obtain the access point. Such a
bootstrapping protocol is typically designed using a broadcast or a multicast protocol. The
client sends an initial request for a reference to a lookup service using the bootstrapping
protocol. The request contains information describing the type of request as well as the type
of service, in this case lookup, that the client is interested in. On receiving the client’s
request, typically one or more lookup services send a reply back to the client passing along
their access points. The client can then contact the lookup services directly to obtain
references to other services.

In CORBA, a client can get the access point of a Name Service using the
resolve_initial_references() call on the ORB. Internally, the ORB
uses a broadcast protocol to get the access point, an object reference, of the Name
Service.

4 Determine a query language. The lookup service may optionally support a query
language that allows clients to search for services using complex queries. For example,
a query language could be based on using a property sheet that describes the type of
service a client is interested in, in some cases even the actual data type of the service
might be used. The properties pertaining to a particular service may be stored with the
service itself or it may be stored externally, for example using a Property Service. The
client when using the Lookup service to query a service may submit a list of properties
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 6
that should be satisfied by the requested service. The Lookup service can then compare
the list of properties submitted by the client against the properties of the available
services. If a match is found, the reference to the service is returned to the client.

The CORBA Trading Service allows properties to be specified corresponding to a
service that is registered with it. A client can build an arbitrarily complex query using
a criteria that is matched against the properties of the registered services.

Example Resolved Consider the example where a client wants to obtain an initial reference to a transaction
manager in a distributed CORBA environment. Using the Lookup pattern, a Lookup
service should be implemented. Most CORBA implementations provide such a Lookup
service either in the form of a Name Service or a Trading Service, or both. These services
are accessible via IIOP and provide well-defined CORBA interfaces.

In our example, the server which created a transaction manager should first obtain a
reference to the Name Service and then use it to register the reference of the created
transaction manager. The C++ code below shows how a server can obtain the reference to
the Name Service and then register the transaction manager with it.

// First initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Create a Transaction Manager
TransactionMgr_Impl *transactionMgrServant =

new TransactionMgr_Impl;

// Get the CORBA object reference of it.
TransactionMgr_var transactionMgr =

transactionMgrServant->_this();

// Get reference to the initial naming context
CORBA::Object_var obj = orb-> 

resolve_initial_references(“NameService”);

// Narrow the reference
CosNaming::NamingContext_var ns =

CosNaming::NamingContext::narrow(obj);

// Create the name with which the transaction
// manager will be bound
CosNaming::Name name;
name.length(1);
name[0].id = CORBA::string_dup(“Transactions”);

// Register transactionMgr object reference in the
// NS at the root context
ns->bind(name, transactionMgr);

Once the transaction manager has been registered with the Name Service, a client can
obtain its object reference from the Name Service. The C++ code below shows how a client
can obtain the reference of the transaction manager from the Name Service.

// First initialize the ORB
CORBA::ORB_var orb = CORBA::ORB_init(argc, argv);

// Get reference to the initial naming context
CORBA::Object_var obj = orb-> 

resolve_initial_references(“NameService”);

// Narrow the reference
CosNaming::NamingContext_var ns =

CosNaming::NamingContext::narrow(obj);

// Create the name with which the transactionMgr 
// is bound in the NS
CosNaming::Name name;
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 7
name.length(1);
name[0].id = CORBA::string_dup(“Transactions”);

// Resolve transactionMgr from the NS
CORBA::Object_var obj = ns->resolve(name);

// Narrow the object reference
TransactionMgr_var transactionMgr =

TransactionMgr::_narrow(obj);

Once the initial reference to the transaction manager has been obtained by the client, it can
then use it to invoke operations as well as to obtain references to other CORBA objects and
services.

Variants Several instances of Lookup service can be used together to build a federation of Lookup
services. The instances of Lookup services in a federation co-operate to provide clients
with a wider spectrum of object references and services. A federated Lookup service can
be configured to forward requests to other Lookup services when it can not fulfill the
requests itself. This widens the scope of queries and allows a client to gain access to
additional objects it was not able to reach before. The Lookup services in a federation can
be in the same or different location domains.

Lookup service can be used to build fault-tolerant systems. Replication is a well-known
concept in providing fault-tolerance and can be applied at two levels using Lookup service.
First, the Lookup service itself can be replicated. Multiple instances of a Lookup service
can serve to provide both load balancing as well as fault tolerance. The Proxy pattern
[GHJV] can be used to hide the selection of a Lookup service from the client. For example,
several ORB implementations provide smart proxies [OMG] on the client side which can
be used to hide the selection of a particular Lookup service from among the replicated
instances of all the Lookup Services.

Second, the services and objects that are registered with a Lookup service can also be
replicated. A Lookup service can be extended to support multiple registrations of objects
for the same list of properties, e.g. the same name, in the case of the CORBA Name
Service. The Lookup service can be configured with various strategies [GHJV] to allow
dispatch of the appropriate object upon request from a client. For example, a Lookup
service could use a round-robin strategy to alternate between multiple instances of a
transaction manager that are registered with it using the same list of properties. This type
of replication is used by Inprise [INPRISE] to extend the scalability of their CORBA
implementation called Visibroker.

Known Uses CORBA—The Common Object Services Interoperable Naming Service and Trading
Service implement lookup services. Whereas the query language of the Name Service is
quite simple, using just names, the query language of the Trading Service is powerful and
can suit complex queries for components.

Java—The Java Naming and Directory Interface (JNDI) implements a Lookup service by
providing directory and naming functionality to Java applications. Using JNDI, Java
applications can store and retrieve named Java objects of any type. In addition, JNDI
provides querying functionality by allowing clients to lookup Java objects using their
attributes.

Jini—Jini supports ad-hoc networking by allowing services to join a network without
requiring any pre-planning, installation, or human intervention and by allowing users to
discover devices on the network. Jini services are registered with Jini’s lookup service and
these services are accessed by users using Jini’s discovery protocol. To increase network
reliability the Jini lookup service regularly broadcasts its availability to potential clients.
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 8
COM—The Windows Registry can be seen as some kind of lookup service. Clients know
either the ProgId, the name and the version in some cases, or the GUID (Global Unique
IDentifier) of the component. The registry allows then to retrieve the associated
components.

DNS—The Domain Name Service is responsible for the coordination and mapping of
domain names to and from IP numbers.

Telephone Directory Service—The Lookup pattern has a real world known use case in the
form of telephone directory service. A person X may want to obtain the phone number of
person Y. Assuming person Y has registered his/her phone number with a lookup service,
in this case a telephone directory service, person X can then call this directory service and
obtain the phone number of person Y. The telephone directory service will have a well-
known phone number, for example 411, thus allowing person X to contact it.

Receptionist—Imagine someone is looking for another person, but just knows the house
where that person is living. However, the other person does not live alone in that house.
Now, if someone wants to talk to that person, he/she will ring the door bell. People in the
house hearing the door bell ringing would know that somebody is at the door wanting to
talk to them. However, it may not be clear to whom the person wants to talk to. So one of
them, for example a receptionist, will answer the person ringing at the door. The
receptionist forms an access point for the person. This allows him/her to ask for the person
he/she is looking for and get a ’reference’ to that person.

Consequences There are several benefits of using the Lookup pattern:

Availability: Using the Lookup pattern, a client can find out on demand what distributed
objects or services are available in its environment. Note that an object or service may no
longer be available but its reference may not have been removed from the lookup service.
Please see the Dangling references liability for further details.

Independence: The Lookup pattern allows a client to be able to obtain initial references of
one or more distributed objects or services without relying on other unknown distributed
objects or services. The well-known bootstrapping protocol allows the client to find the
Lookup service and then use it to find other distributed objects and services.

Location Transparency: The Lookup pattern provides location transparency by shielding
from the clients the location of the registered objects and services. Similarly, the pattern
shields the location of the clients from the servers.

Configuration simplicity: Distributed systems based on a Lookup service need little or no
manual configuration, no files need to get shared or transferred in order to distribute
references to distributed objects. The usage of a bootstrapping protocol is a key feature for
ad hoc networking scenarios, where the environment changes regularly and cannot be
predetermined.

Property-based selection: References to distributed objects can be chosen based on
properties. This allows more fine-grained selection of services including better matches
between the client needs and the service offers.

There are some liabilities of using the Lookup pattern:

Single point of failure: One consequence of the Lookup pattern is the danger of constituting
a single point of failure. If an instance of a Lookup service crashes, the distributed system
can lose the registered references along with the associated properties. Once the Lookup
service is restarted, the distributed objects would need to re-register with it unless the
Lookup service has persistent state. This can be both tedious and error prone since it
requires registered distributed objects to detect the Lookup service crashing and then
restarting. In addition, a Lookup service can also act as a bottleneck and affect system
Copyright © 2001, Michael Kircher, and Prashant Jain



Lookup 9
performance. A better solution, therefore, is to introduce replication of the Lookup service,
as discussed in the variants section.

Dangling references: Another consequence of the Lookup pattern is the danger of having
dangling references. The registered references in the Lookup service can become outdated
as a result of their corresponding objects being terminated or being moved. In this case the
Leasing pattern [LEASING], as applied in [JINI] can help by forcing the objects to prolong
their ’lease’ regularly if they do not want their entry removed automatically.

Unwanted replication: Problems can occur when similar objects with the same properties
are registered but replication is not wanted. Depending upon the implementation of the
Lookup service, multiple instances of the same object may get erroneously registered or
one object may overwrite the registration of a previous object. Enforcing at least one of the
properties be a unique identifier can avoid this problem.

See Also The Activator design pattern [ACTIVATOR] registers activated components with a lookup
service in order to provide clients references to them. In many cases the references
retrieved from a lookup service are actually references to factories, implementing the
Factory design pattern [GHJV]. This decouples the location of components from their
activation. The Lightweight Directory Access Protocol (LDAP) is a protocol for accessing
Lookup services. It runs directly over TCP, and can be used to access a stand-alone LDAP
directory service or to access a directory service that is back-ended by X.500.

Acknowledgements

We would like to thank our EuroPLoP 2000 shepherd, Bob Hanmer, for his feedback and
valuable comments. We would also like to thank everyone at the writer’s workshop at St.
Martin, Austria during our Siemens retreat as well as the people of the writer’s workshop
at EuroPLoP 2000 for their comments and suggestions.

References

[ACTIVATOR] M. Stal, Activator Pattern, http://www.stal.de/articles.html, 2001

[BRJ98] G. Booch, J. Rumbaugh, I. Jacobsen: The Unified Modeling Language User Guide, Addison-Wesley,
1998

[GHJV] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995

[INPRISE] Inprise, http://www.inprise.com, 2001

[IONA] IONA, http://www.iona.com, 2001

[JINI] JiniTM, http://www.sun.com/jini, 2001

[LEASING] P. Jain and M. Kircher, Leasing Pattern, Pattern Language of Programs conference, Allerton Park,
Illinois, USA, August 13-16, 2000

[OMG] Object Management Group, http://www.omg.org, 2001

[POSA2] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann: Pattern-Oriented Software Architecture—
Patterns for Concurrent and Distributed Objects, John Wiley and Sons, 2000

[TAO] The ACE ORB, http://www.cs.wustl.edu/~schmidt/TAO.html, 2001
Copyright © 2001, Michael Kircher, and Prashant Jain


