
Towards a Reflective Middleware Framework for
QoS-enabled CORBA Component Model Applications

Nanbor Wang Michael Kircher Douglas C. Schmidt
Kirthika Parameswaranfnanbor,kirthikag@cs.wustl.edu Michael.Kircher@mchp.siemens.de schmidt@uci.edu
Dept. of Computer Science Siemens ZT Dept. of Electrical

and Computer Engineering
Washington University Munich University of California
One Brookings Drive Germany 616E Engineering Tower

St. Louis, MO 63130 Irvine, CA 92697

Abstract

Although existing CORBA specifications, such as Real-time
CORBA and CORBA Messaging, address many end-to-end
quality-of-service (QoS) aspects, they do not define strategies
for configuring these QoS aspects into applications. There-
fore, application developers must make these configuration de-
cisions manually and explicitly, which is tedious, error-prone,
and often sub-optimal. Although the recently adopted CORBA
Component Model (CCM) does define a standard configura-
tion framework for packaging and deploying software compo-
nents, conventional CCM implementations focus on function-
ality rather than quality-of-service, which makes them unsuit-
able for applications with stringent QoS requirements.

This paper presents three contributions to the study of re-
flective middleware for QoS-enabled component-based appli-
cations. It outlines strategies for (1) selecting optimal commu-
nication mechanisms reflectively, (2) re-factoring QoS aspects
from components into their containers to adaptively respond to
changing QoS requirements and conditions, and (3) dynam-
ically loading/unloading and activating/deactivating compo-
nent implementations. Based on our ongoing research on
CORBA and the CORBA Component Model, we believe the
application of reflective techniques to component middleware
will provide an dynamically adaptive and (re)configurable en-
vironment for COTS software that meets the stringent QoS de-
mands of next-generation applications.

1 Introduction

Emerging trends and challenges: Distributed applications
are increasingly being developed using the standard inter-
faces, protocols, and services defined by distributed object

computing middleware, such as CORBA [1]. CORBA is a
distributed object computing middleware standard that allows
clients to invoke operations on remote objects without concern
for where the object resides or what language the object is
written in [2]. In addition, CORBA shields applications from
non-portable details related to the OS/hardware platform they
run on and the communication protocols and networks used to
interconnect distributed objects.

An increasing number of distributed applications require
middleware that is both highly flexible and configurable, as
well as highly efficient, predictable, and scalable. For in-
stance, the demand for embedded multimedia applications is
growing rapidly and hand-held devices, such as PIMs, Web-
phones, Web-TVs, and Palm computers, running multimedia
applications, such as MIME-enabled email and Web browsing,
are becoming ubiquitous [3]. Ideally, these embedded multi-
media applications should be configured from standard mid-
dleware CORBA components, rather than being programmed
from scratch. However, meeting the QoS demands of these ap-
plications requires the resolution of many research challenges,
including handling low bandwidth, heterogeneity in the net-
work connections, frequent changes and disruptions in the
established connections due to migration, maintaining cache
consistency, restrictions on physical size, and variable power
consumption [4].

Distributed object computing middleware, such as CORBA,
should be well-suited to provide the core communication mid-
dleware for the distributed applications outlined above. For
instance, recent additions to the CORBA specification, such
as Real-time CORBA [5] and CORBA Messaging [6], address
many end-to-end quality-of-service (QoS) aspects. These
specifications standardize interfaces and policies for defining
and controlling various types of application QoS aspects.

1

Historically, however, the standard CORBA specification
has not addressed component configuration issues. For exam-
ple, the CORBA specification has not mandated standard in-
terfaces to (1) initialize and deploy services dynamically or (2)
enable different service implementations to interact portably
with each other via these predefined interfaces. As a re-
sult, many “cross-cutting” [7] service implementation aspects,
such as memory and bandwidth management, concurrency,
dependability, and security, are tightly coupled into the ap-
plication structure and behavior of CORBA servants. As a
result, programming applications directly using the CORBA
specification has yielded (1) brittle servant implementations
that are hard to optimize, maintain, and enhance and (2) non-
standardized mechanisms for bootstrapping and initializing
ORB components and services [8].

To address these problems, therefore, the OMG recently
adopted the CORBA Component Model (CCM) specifica-
tion [9]. In theory, the adoption of CCM should reduce the
effort required to portably integrate components used to im-
plement services and applications. Moreover, CCM should
simplify the reconfiguration and replacement of existing ap-
plication services by standardizing the interconnection among
components and interfaces.

In practice, however, the CCM standard and implementa-
tions are as immature today as the underlying CORBA stan-
dard and ORBs were three to four years ago. Moreover, com-
mercial CCM vendors largely address the requirements of e-
commerce, workflow, report generation, and other general-
purpose business applications. The middleware requirements
for these applications focus on functional interoperability, with
little emphasis on assurance of or control over mission-critical
QoS aspects, such as timeliness, precision, dependability, or
minimal footprint [10]. As a result, it is not feasible to use
off-the-shelf CCM implementations for QoS-enabled applica-
tions.

Solution approach ! reflective middleware: Reflective
middleware is a term that describes a loosely organized collec-
tion of technologies designed to manage and control hardware
and software system resources based on mounting R&D expe-
rience with distributed applications and systems [11]. Reflec-
tive middleware techniques enable dynamic changes in appli-
cation behavior by adapting core software and hardware mech-
anisms with or without the knowledge of applications or end-
users [12]. We are applying the following reflective middle-
ware techniques to our research on QoS-enabled CCM imple-
mentation to improve its flexibility, efficiency, predictability,
and scalability:� Selecting optimal communication mechanisms reflec-
tively: To present a homogeneous programming model for
application developers, CORBA hides the location of objects
from client applications. By examining an object location’s

reflectively, however, a CORBA ORB can select an optimal
communication mechanism automatically when itbindsan ob-
ject reference [13]. To avoid violating the CORBA object
model, however, we believe that this selection should occur
without direct application intervention in order to optimize
middleware performance and predictability transparently.�Reflectively re-factoring QoS aspects from components
into their containers: In the CCM, acontainerencapsu-
lates acomponentimplementation by offering a run-time en-
vironment that provides certain functionality, such as security,
event notification, transaction and persistent state services, for
the component it manages. We believe that CCM containers
should be extended to strategize QoS properties of containers,
as well. This extension allows the ORB endsystem to support
dynamic QoS configuration reflectively since it can inspect
and adjust a component’s QoS properties via its container.
By factoring out QoS adaptation mechanisms into containers,
components developers can defer the selection of QoS require-
ments of a component to run-time, which enhances component
flexibility and adaptability.� Reflectively loading/unloading and activat-
ing/deactivating component implementations: Next-
generation mobile applications will increasingly run inad
hoc wireless networking configurations where the necessary
implementation of a service component may not knowna
priori . Thus, on-demand loading/unloading mechanisms
are necessary to (re)configure components dynamically.
The lifecycle for loading/unloading of components must be
optimized using reflective techniques in order to minimize
footprint, maximize extensibility, and meet application QoS
requirements more adaptively.

We are applying these reflective middleware techniques at
various levels, ranging from the ORB Core up to CORBA
Component Model services. The vehicle for this research is
TAO [14], which is an open-source1, CORBA-compliant ORB
designed to support applications with stringent QoS require-
ments. Figure 1 illustrates the components in the TAO real-
time ORB endsystem.

2 Concluding Remarks

Recent CORBA specifications define better support for QoS
and configurability. In particular, the CORBA Component
Model (CCM) [9] defines standard interfaces, policies, and
services for structuring, integrating, and deploying CORBA
components. Likewise, the Real-time CORBA [5] and
CORBA Messaging [6] specifications address many end-to-
end quality-of-service (QoS) aspects. We believe, however,

1The source code and documentation for TAO can be downloaded from
www.cs.wustl.edu/�schmidt/TAO.html.

2

NETWORK

ORB RUN-TIMEIDL
STUBS

IDL
SKELETON

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

OS KERNEL

HIGH-SPEED

NETWORK INTERFACE

REAL-TIME I/O
SUBSYSTEM

ACE COMPONENTS

REAL-TIME ORB CORE
IOP

PLUGGABLE

ORB & XPORT

PROTOCOLS

IOP
PLUGGABLE

ORB & XPORT

PROTOCOLS

QoS

ADAPTATION

 HOME

 COMPONENT

IMPLEMENTATION

C
A

L
L

B
A

C
K

S

REAL-TIME POA
SCHEDULER

IDL

SKELS

CLIENT
operation ()

in args

out args + return value

REAL-TIME

PORTABLE OBJECT ADAPTER

C
O

R
B

A
 S

E
R

V
IC

E
S

(S
E

C
U

R
IT

Y
,

E
V

E
N

T
S

 ...)

Figure 1: Components in the TAO Real-time ORB Endsystem

that these specifications will be unsuitable for an important
class of QoS-enabled applications unless ORB implementa-
tions applyreflective middleware techniquesto automate the
selection and adaptation of key QoS aspects.

The reflective middleware techniques we believe are essen-
tial to improve the QoS aspects of CORBA services and ap-
plications include (1) the ability to select optimal communi-
cation mechanisms reflectively, (2) the automatic re-factoring
of QoS aspects from components into their containers to adap-
tively respond to changing QoS requirements and conditions,
and (3) on-demand loading/unloading and dynamic activa-
tion/deactivation of component implementations to support
dynamic reconfiguration of systems. We are incorporating
these enhancements into TAO, which is the platform we are
using to implement and optimize QoS-enabled CCM.

References
[1] Object Management Group,The Common Object Request Broker:

Architecture and Specification, 2.3 ed., June 1999.

[2] M. Henning and S. Vinoski,Advanced CORBA Programming With
C++ . Addison-Wesley Longman, 1999.

[3] G. Forman and J. Zahorhan, “The Challenges of Mobile Computing,”
IEEE Computer, vol. 27, pp. 38–47, April 1994.

[4] A. Gokhale and D. C. Schmidt, “Optimizing a CORBA IIOP Protocol
Engine for Minimal Footprint Multimedia Systems,”Journal on
Selected Areas in Communications special issue on Service Enabling
Platforms for Networked Multimedia Systems, vol. 17, Sept. 1999.

[5] D. C. Schmidt and F. Kuhns, “An Overview of the Real-time CORBA
Specification,”Submitted to IEEE Computer Magazine, 2000.

[6] Object Management Group,CORBA Messaging Specification, OMG
Document orbos/98-05-05 ed., May 1998.

[7] G. Kiczales, “Aspect-Oriented Programming,” inProceedings of the
11th European Conference on Object-Oriented Programming, June
1997.

[8] N. Wang, D. C. Schmidt, and D. Levine, “Optimizing the CORBA
Component Model for High-performance and Real-time Applications,”
in ‘Work-in-Progress’ session at the Middleware 2000 Conference,
ACM/IFIP, Apr. 2000.

[9] BEA Systems,et al., CORBA Component Model Joint Revised
Submission. Object Management Group, OMG Document
orbos/99-07-01 ed., July 1999.

[10] C. D. Gill, F. Kuhns, D. L. Levine, D. C. Schmidt, B. S. Doerr, R. E.
Schantz, and A. K. Atlas, “Applying Adaptive Real-time Middleware
to Address Grand Challenges of COTS-based Mission-Critical
Real-Time Systems,” inProceedings of the 1st IEEE International
Workshop on Real-Time Mission-Critical Systems: Grand Challenge
Problems, Nov. 1999.

[11] F. Kon and R. H. Campbell, “Supporting Automatic Configuration of
Component-Based Distributed Systems,” inProceedings of the5th
Conference on Object-Oriented Technologies and Systems, (San Diego,
CA), USENIX, May 1999.

[12] J. A. Zinky, D. E. Bakken, and R. Schantz, “Architectural Support for
Quality of Service for CORBA Objects,”Theory and Practice of Object
Systems, vol. 3, no. 1, 1997.

[13] M. Henning, “Binding, Migration, and Scalability in CORBA,”
Communications of the ACM special issue on CORBA, vol. 41, Oct.
1998.

[14] D. C. Schmidt, D. L. Levine, and S. Mungee, “The Design and
Performance of Real-Time Object Request Brokers,”Computer
Communications, vol. 21, pp. 294–324, Apr. 1998.

3

