
Resource Lifecycle Manager
Michael Kircher, Prashant Jain

Michael.Kircher@siemens.com
Corporate Technology, Siemens AG, Munich, Germany

pjain@gmx.net
IBM Research, Delhi, India

The Resource Lifecycle Manager pattern decouples the management of the
lifecycle of resources from their use by introducing a separate Resource
Lifecycle Manager, whose sole responsibility is to manage and maintain the
resources of an application.

Note: This pattern appeared in a heavily reworked and updated version in
the book Pattern-Oriented Software Architecture — Patterns for Resource
Management published by Wiley [POSA3].

Example

Building distributed systems is challenging. Making distributed systems
robust and scalable is even more challenging. The most important aspect of
making distributed systems robust and scalable is how resources are
managed. Resources in distributed systems can be of many different types,
such as network connections, threads, synchronization primitives, servants
etc. Network connections represent communication channels between
client applications and distributed application services. Managing them
efficiently requires the ability to determine when to establish connections
and when to release them. Threads are especially important in distributed
systems since they provide asynchronous behavior between different parts
of an application, for example decoupling UI interaction from typical client
functionality and service provisioning. However, managing threads
effectively can be quite challenging since it involves close monitoring of
their execution and the ability to determine when to create new threads or
destroy no longer needed threads. Similarly, synchronization primitives
such as locks and tokens are typically needed to synchronize the
asynchronous parts of an application and to allow for their internal
coordination and interaction. However, when and how these

synchronization primitives are created and released is very important and
also very challenging to implement.

Consider a distributed system that needs to service thousands of clients. As
a consequence, thousands of network connections are established between
the clients and the server as shown in the figure above. The server typically
provides one or more services to the clients. A client invokes a request on
the server using its connection and as a result, the response to the
synchronous invocation on the remote service is sent back via the same
connection. If the request needs to be decoupled from the response and
some form of asynchronous communication is required between the client
and the server, then the server would need to open a new connection to the
client and use it to initiate a call-back to the client. For example, the server
may use a call-back to notify a client about events in the service.

Maintaining thousands of network connections becomes even more
complex in the case of real-time systems where stringent QoS requirements
exist and as a result, the server connection policies are typically quite
complex. Connections might exist that are associated with specific
priorities to be obeyed on executing requests on the service.

As connections depend on multiple low-level resources, they should be
freed when no longer needed to ensure system stability. As a result, complex

Server

Client-A

Client-B

Client-C

Network
Connections

lifecycle scenarios for each connection must be managed by the application.
This complexity in managing the lifecycles of connections can affect the
core functionality of the application and as a consequence can make the
business logic of the application hard to understand and to maintain,
because of the entangled connection management code.

Context

Resource users, such as applications, need to be decoupled from the
management of the lifecycle of resources. Resources are acquired from a
resource environment, such as an operating system.

Problem

The lifecycles of resources in small systems are typically controlled directly
by them. But as the systems are further extended the resource users are
faced with one or multiple of the following constraints:

• Availability—The number of available resources typically doesn't grow
at the same rate as the size of the overall system. Therefore, in large
systems, managing resources efficiently and effectively is important to
ensure that they are available when needed by users.

• Scalability—As systems become large, the number of resources that need
to be managed also grows and can become much more difficult to
manage directly by the users.

• Complexity—Large systems typically have complex interdependencies
between resources that can be very difficult to track. Maintaining and
tracking these interdependence is important to allow proper and timely
release of resources when they are no longer needed.

• Performance—To ensure that large systems don't face any performance
bottlenecks, many optimizations are typically made. However, providing
such optimizations can be quite complex if performed by individual
resource users.

How can the above constraints be addressed thus allowing resource users to
delegate the responsibility of managing the lifecycle of resources? In
addition, how can the problem be solved while also addressing the
following forces?

• Stability—If resource users have to care about resource lifecycle issues,
they might forget to free resources, which leads in the long term to system
instability. In addition, it should be possible to control acquisition of
resources to ensure that there is no starvation of available resources at the
system level leading to instability.

• Inter-dependencies—In complex systems resources of the same of
different type might depend on each other. This means the lifecycle of
resources are inter-dependent and need to be managed appropriately.

• Flexibility—The management of the resource lifecycle should be flexible
by allowing support for different strategies. A strategy would provide a
hook to allow configuration of how resource management should behave.

• Transparency—Resource lifecycle management should be transparent to
the resource user. In particular, the resource user should not have to deal
with any of the complexities of managing resources.

Solution

Separate resouce usage from resource management. Introduce a separate
Resource Lifecycle Manager (RLM) whose sole responsibility is to manage
and maintain the entirety of resources of an application. The RLM thus frees
both the resources to be managed as well as their resource users from the
task of proper resource management and thereby allows a system to provide
high quality of service.

Users can use the RLM to retrieve and get access to specific resources. If a
resource that is requested by a user does not yet exist, the RLM can also
initiate its creation. In addition, RLM allows users to request an explicit
creation of resources.

An RLM has knowledge of current resource usage and can therefore also
reject a request for resource acquisition from a user. For example, if the
system is running low on available memory, then the RLM can reject a user
request to allocate memory.

The RLM also controls the disposal of the resources it manages, either
transparently for the users or upon their explicit request. The RLM
maintains its resources on the basis of appropriate policies that also take into
account available computing resources like memory connections, and file
handles.

If interdependencies between resources exist, the RLMs for individual
resources have to work in “concert”. That means they have to maintain
dependencies between resources, this can be done by one central RLM
having a the full responsibility over individual, as well as dependent,
resources, or by a separate RLM that only deals with the inter-dependencies
while leaving the management of resources of the same type to resource-
specific RLMs.

Structure

The following participants form the structure of the Resource Lifecycle
Manager pattern:

A resource user acquires and uses resources.

A resource is an entity such as a network connection or a thread.

A resource lifecycle manager manages the lifecycle of resources, including
their creation/acquisition, reuse, and destruction.

A resource environment, such as an operating system, owns and manages
resources. The resource environment might itself be a resource manager at
the same or different abstraction level.

The following CRC cards describe the responsibilities and collaborations of
the participants

The participants and their dependencies are displayed graphically in the
following class diagram.

Class
Resource Lifecyle
Manager

Responsibility
• Coordinates lifecycle of

resources including
creation/acquisition,
reuse, and destruction.

Collaborator
• Resource
• Resource

Environment

Class
Resource Environment

Responsibility
• Owns several resources

initially.

Collaborator
• Resource

Class
Resource User

Responsibility
• Acquires and uses

resources.
• Releases unused resources

to the resource lifecycle
manager.

Collaborator
• Resource
• Resource Lifecycle

Manager

Class
Resource

Responsibility
• Represents a reusable

entity, such as memory or
a thread.

• Is acquired from the
resource environment by
the resource lifecycle
manager.

Collaborator

Resource User
Resource
Lifecycle
Manager

Resource
Environment

Resource

*
**

* ***

manages
uses owns

requests
from

gets
from

The interactions between the participants are shown in the following sketch.

Dynamics

The dynamics of the pattern consists of the following activities:

• The system starts and initializes RLM.

• The resource user has a need for a resource and therefore tries to acquire
the resource from the RLM.

• The RLM accepts the acquisition request and acquires the resource
according to the resource acquisition strategy.

• The resource is handed to the user, which now uses it.

• The resource is accessed by the resource user.

• When the resource is no longer used by the user, it hands it back to the
RLM.

Resource Lifecycle Manager

Resource

acquire

release

Environment
Resource User

acquire

release

• The RLM checks dependencies of the resource on other resources and
decides to either recycle the resource or to evict it.

Implementation

There are seven steps involved in implementing the Resource Lifecycle
Manager pattern.

1 Determine resources that need to be managed: A developer needs to first
identify all resources whose lifecycle needs to be managed. Since
resources can be of many different types, an application can provide
multiple Resource Lifecycle Managers for different types of resources,
for example, one Resource Lifecycle Manager for handling computing
resources like processes, threads, file handles, and connections, and
another Resource Lifecycle Manager for maintaining application
components. On the other hand, a single Resource Lifecycle Manager
can also handle resources of different types. Such a solution can be
effective when complex interdependencies also need to be maintained
among different types of resources [See Implementation Step 4]. If only

: Resource User : Resource
Environment

: Resource Lifecycle
Manager

acquire

: Resource

access

resource

release
resource

acquire

resource

available?

acquire

access

resource

available?

release
resource

Reuse already
acquired resource

dependencies?

dependencies?

a single instance of Resource Lifecycle Manager is needed, it should be
implemented as a Singleton [GHJV95].

2 Define resource creation and acquisition semantics: A developer needs
to determine how resources will be created or acquired by the RLM. This
includes determination of both when resources will be created/acquired
as well as how resources will be created/acquired. Note that the RLM
may create resources by combining more basic resources. Patterns such
as Eager Acquisition [POSA3], Lazy Acquisition [POSA3], Allocation
[Fern02], and Partial Acquisition [POSA3] can be used to control when
resources will be acquired, while patterns such as Factory and Abstract
Factory [GHJV95] can control how resources are created. Note, that
resources are always acquired via the RLM. That is the only way it can
control when, where, and how resources are acquired.
In order to ensure system stability, the RLM might reject acquisition
requests from resource users due to various reasons including the
situation when available resources become scarce.
Pooled resources are often created up-front during the initialization of the
RLM using either Eager Acquisition or Partial Acquisition. Eager
Acquisition creates/acquires a resource completely and before it is ever
accessed—thus it is readily usable after its creation. However, it can take
a long time to fully create/acquire large resources. Partial Acquisition can
help reduce up-front acquisition time by performing step-wise resource
acquisition. Finally, using Lazy Acquisition the entire creation/
acquisition of a resource is deferred to the point in time it is actually
accessed.

3 Define resource management semantics: One of the principal
responsibilities of the RLM is to manage resources efficiently and
effectively. Frequent acquisition and release of resources can be
expensive and hence the RLM typically uses patterns such as Caching
[POSA3] and Pooling [POSA3] to optimize the management of
resources. Pooling can be used to keep a fixed number of resources
constantly available. This strategy is in particular useful for managing
critical computing resources like processes, threads, and connections,
because they must be readily accessible. Caching, in contrast, keeps
resources available in memory only for a certain amount of time. Caching
is mostly applied for application components, because very likely they
are used only for certain tasks. Once the tasks are performed, the
components are not needed until the same tasks are executed again.
Therefore, to not degrade the quality of service of an application, it can
be helpful to remove unused components temporarily from memory, so
that the space and the computing resources they occupy become available
for components that are in use (see also the Passivation

pattern[VSW2002]). Therefore, using both these patterns together helps
to keep a bound on total resource consumption.

4 Handle resource dependencies: In many applications resources are
dependent on each other. So the first step is to isolate the different
resource lifecycles in separate RLMs to ease maintenance. However,
optimizations based on dependent resources will be hard to apply. In the
example above, dependent resources can include application services that
have been accessed via a specific connection. In real-time environments,
servants implementing the application services are often directly
associated with prioritized connections from clients so that priorities can
be obeyed end-to-end. Therefore, the removal of any such connection
influences the behavior of the servant, including its used resources. The
servant might become inaccessible if dependent connections are evicted.
Therefore, for managing connections and servants and their inter-
dependencies, an RLM with a common responsibility should be
considered. The exact applicability of such an RLM as well as its
implementation is heavily dependent on application context as well as on
the types of resources. Therefore, generic guidelines cannot be given on
how to identify and handle resource dependencies.

5 Define resource release semantics: Once resources are no longer needed,
they should be automatically released by the RLM. Patterns such as
Leasing [POSA3] and Evictor [POSA3] can be used to control when and
how resources can be released. An Evictor allows for a controlled
removal of less frequently used resources from the cache. To prevent the
release of still referenced resources at all, an RLM can use the Leasing
pattern that allows the RLM to specify the time for which the resources
will be available to the users. Once this time expires, the resources can be
safely and automatically be released by the RLM. Additionally, a
Garbage Collector [JoLi96] can be used to identify unused resources,
resources that are not referenced by any user or other resource, and evict
them.

6 Define resource access semantics: Resources that have been created/
acquired need to be easily accessible. The RLM can use patterns such as
Lookup [POSA3] to allow easy access to resources.

7 Configure strategies: For each of the above steps, the RLM should allow
different strategies to be configured that control the final behavior of how
the lifecycle of resources is managed. For example, if a resource is
expensive, it should be acquired as late as possible using LA and released
as early as possible using Evictor. On the other hand, a resource that is
relatively less expensive and is used frequently should be acquired early
on using EA and retained through the lifetime of the application. In
dynamic environments reflection [POSA1] mechanisms can be
employed to adapt configuration strategies according to the environment.

Example Resolved

Introduce a RLM that would assume the responsibility of connection
lifecycle management and hence free the application from this
responsibility. This, in effect, would decouple the management of
connections from the business logic of the application.

The connection lifecycle manager would be introduced in the client and
server parts of the distributed application. The clients would then use the
connection lifecycle manager to request new connections to the server.
Once these connections are given to the clients, their lifecycle is then
managed by the connection lifecycle manager.

The responsibility of managing a connection is always assumed to be with
the initiator of the connection, typically the client. However, there can be
situations where, for example, a server may need to drop existing but idle
connections in order to be able to accept new connections.

The eviction of unused connections can be triggered either by the
application itself, or by the RLM implementation using the Evictor
[POSA3] pattern.

Specializations

Object Manager - In building object-oriented systems, an Object Manager
can be used as a specialized RLM that focuses exclusively on the
management of objects.

Known Uses

Component Container—A container manages the lifecycle of application
components and provisions application-independent services. Further, it
manages the lifecycle of resources used by the components, see also
Container and Managed Resource patterns in [VSW2002]. J2EE Enterprise
Java Beans (EJB) [Sun03] and the CORBA Component Model (CCM)
[OMG03b], are two concrete models that implement such functionality.

Connection
Lifecycle
Manager

Application Logic

Remoting Middleware—Middleware technologies such as CORBA
[OMG03a] and .NET Remoting [Ramm02] implement the RLM at multiple
levels. Middleware ensures the proper lifecycle management of resources,
such as connections, threads, synchronization primitives and servants
implementing the remote services.

Current developments, such as Ice [ZeroC03], prove that CORBA and
.NET are not the sole examples for middleware frameworks that implement
RLM functionality. RLM is a proven concept in all middleware
frameworks.

Modern distributed applications start off using such middleware and
thereby rely on the RLM services provided by the middleware, freeing
application logic from those issues.

Consequences

There are several benefits of using this pattern:

• Efficiency—The management of resources by individual users can be
inefficient. The Resource Lifecycle Manager pattern allows coordinated
and centralized lifecycle management of resources. This in turn allows
for better application of optimizations and reduction in overall
complexity.

• Scalability—Using the Resource Lifecycle Manager pattern allows for
more efficient management of resources thus allowing applications to
make better usage of the available resources, which in turn allows for
higher application load.

• Performance—The Resource Lifecycle Manager pattern can ensure that
various levels of optimizations are enabled to achieve maximum
performance from the system. By analyzing resource usage and
availability, it can use different strategies to optimize system
performance.

• Transparency—The Resource Lifecycle Manager pattern makes it
transparent to user how resources are managed. Different strategies can
be configured to control resource creation/acquisition, management and
release. By decoupling resource usage from resource management, RLM
makes the life of a user easier.

• Stability—The Resource Lifecycle Manager pattern can ensure that a
resource is allocated to a user only when sufficient amount is available.
This can help make the system more stable by avoiding situations where
user may directly acquire resources from the system causing resource
starvation.

There are some liabilities of using this pattern:

• Single point of failure—A bug or error in the RLM can lead to the outage
of large parts of the application. Redundancy concepts help only partly,
as complexity is further increased and the performance is further
throttled.

• Flexibility—When individual resource instances need a specialized
treatment, the RLM pattern might be too inflexible.

See Also

Object Lifetime Manager [LGS99]—The Object Lifetime Manager is
specialized on the management of singleton objects, as resources, in
operating systems, that do not support static destructors properly, such as
Real-Time operating systems.

Garbage Collector [JoLi96]—A garbage collector is specialized on
evicting unused objects and their associated resources. Therefore, garbage
collection is not a complete RLM as it does not deal with creation,
allocation or acquisition.

Pooling [POSA3]—Pooling focuses specifically on recycling of resources,
it does cover the complete lifecycle of resources

Caching [POSA3]—Caching is specialized on avoid expensive acquisitions
and associated initialization of resources.

Manager [Somm98]—The Abstract Manager pattern focuses on the
management of objects, not on general resource management.

Abstract Manager [Lieb01]—As the Manager pattern, the Abstract
Manager pattern focuses only on the management of business objects in
enterprise systems, not on general resource management.

Object Manager—The Object Manager pattern, as part of the Resource
Management patter language by Frank Buschmann and Kevlin Henney, and
this pattern base on the same ideas. Their work focuses on the compact
Alexandrian form, we focus on the extensive POSA form.

Acknowledgements

Thanks to our EuroPLoP 2003 shepherd Ed Fernandez for his good
comments and patience, when discussing the comments.

References

[Fern02] E. B. Fernandez, A Pattern for the Request and Allocation of Limited
Resources, European Pattern Language of Programs conference, Kloster
Irsee, Germany, July 3-7, 2002, http://www.hillside.net/patterns/EuroPLoP/
submissions-2002.html

[GHJV95] Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns – Elements
of Reusable Object-Oriented Software, Addison-Wesley, 1995

[JoLi96] R. Jones, and R. Lins, Garbage Collection: Algorithms for Automatic
Dynamic Memory Management, John Wiley & Son Ltd, 1996

[LGS99] D. Levine, G. Gill, and D. C. Schmidt, Object Lifetime Manager, Pattern
Languages of Programming Conference, Allerton Park, Illinois, USA, 15-
18 August,1999

[Lieb01] J. Liebenau, Abstract Manager, Pattern Language of Programs conference,
Allerton Park, Illinois, USA, 2001

[OMG03a] Object Management Group (OMG), Common Object Request Broker
Architecture (CORBA), http://www.omg.org/cgi-bin/doc?formal/02-12-06,
2003

[OMG03b] Object Management Group (OMG), CORBA Component Model
Specification, http://www.omg.org/cgi-bin/doc?formal/02-06-65, 2003

[POSA3] M. Kircher and P. Jain, Pattern-Oriented Software Architecture — Patterns
for Resource Management, John Wiley and Sons, 2004

[Ramm02] I. Rammer, Advanced .NET Remoting, APress, 2002

[Somm98] Peter Sommerlad, Pattern Languages of Program Design 3 — Manager
pattern, Addison- Wesley, 1998

[Sun03] Sun Micosystems Inc., Java2 Enterprise Edition (J2EE) - Enterprise Java
Beans (EJB), http://java.sun.com/j2ee/, 2003

[VSW2002] M. Voelter, A. Schmid, and E. Wolff, Server Component Patterns -
Component Infrastructures illustrated with EJB, John Wiley & Sons, 2002

[ZeroC03] ZeroC Inc., Internet Communication Engine (ICE), http://www.zeroc.com,
2003

