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To make informed choices among middleware alternatives, de-
velopers of distributed object systems should understand tgure 1: Polling Model for CORBA Asynchronous Twoway
patterns and components used to implement key feature®fierations

CORBA ORBs. Recent Object Interconnection columns [1,

2, 3] have explored the features of the CORBA Messaging

specification [4]. In this article, we describe key C++ feaallback model: Inthis model, when a client invokes a two-
tures, patterns, and components used to implement an OM&y asynchronous operation on an object, it passes an ob-
IDL compiler that supports the Asynchronous Method Invocgect reference to aeply handler servanais a parameter, as
tion (AMI) callback model defined in the CORBA Messaginghown in Figure 2. This object reference is not passed to the

specification. server, but instead is stored locally by the client ORB. When
The CORBA Messaging specification defines two AMI pro- 1: request

gramming models, thpolling model and theallbackmodel. CALLBACK O—» TARGET

In both models, only clients behave asynchronousky, CLIENT _speration(callback, args) ©BJECT

server applications do not change at all. These AMI models Fipcall
are outlined briefly below: @D T

0
Polling model: In this model, each two-way AMI opera- N 2 response N

tion returns &Pol | er val uet ype [5]’ which is very much Figure 2: Callback Model for CORBA Asynchronous Twoway
like a C++ or Java object in that it has both data membé&gerations

and methods. Operations onPal | er are just local C++

method calls and not remote CORBA operation invocationlse server replies, the client ORB receives the response and
The polling model is illustrated in Figure 1. The client can useses the reply handler servant provided by the client applica-
the Pol | er methods to check the status of the request sditn to dispatch the response to the appropriate callback op-
can obtain a server’s reply. If the server hasn’t replied yet, thation. This model requires client application developers to
client can either (1) block awaiting its arrival or (2) return tobtain and initialize a POA and to activate objects in the POA,
the calling thread immediately and check back orRbkel er  which effectively makes the application behave as both a client
to obtain theval uet ypes when it’'s convenient. and a server.




Reply handler servants are accessed via normal object agiplications affect only how clients are written, as described
erences. Therefore, servants can be implemented in processgsby-step below.
other than the client or the server involved in the original in-

vocation. For instance, it's possible for a reply handlerservgﬂep 1: Define the IDL interface and generate the stubs:
LO process “;hlr(:]-part_y’f relphl‘?s- The most cor:nmon US€-Cagfhroughout this article, we'll use the followir@uot er IDL
owever, Is for the original client to process the response. ;o rtace 1o illustrate how to use and implement the AMI Call-

In general, the callback model is more efficient than tgck model:
polling model because the client need not invoke method calls
nodul e St ock
onaval uet ype repeatedly to poll for results. Moreover, the
AMI callback model provides the following benefits compared:i n;/erfTace Quot er {t_ . - .
: : . . WO-wWay operation to retrieve curren
to alternative CORBA invocation models: /1 stock val ue.
. - . I ong get_quote (in string stock_nane);
Simplified asynchronous programming model: AMI al- }: 9 get-A ( 9 - )

lows operations to be invoked asynchronously usingsthc
invocation interfacgSll). Using SlI for AMI eliminates much }:
of the tedium and complexity inherent in tdgnamic invoca-

tion interface(DII)’s deferred synchronous model. In partic- After IDL interfaces are defined, they must be passed
ular, DIl requires programmers to insert parameters explicititough an OMG IDL compiler, which generates a standard
into Request objects, whereas the Sll-generated stubs auégt of C++ stubs and skeletons. For each two-way operation in
mate and optimize [6] parameter. the IDL interface, an IDL compiler can generate the SMI and
AMI stubs that applications use to invoke operations. As dis-

Improved quality of service: When implemented properly, ) :
AMI can improve the scalability of CORBA applications. Fopussed in [9], servers remain unchange.d. Thus, the skeletons
anerated by the IDL compiler are no different for AMI than

instance, it minimizes the number of client threads that woﬁD

...

otherwise required to perform two-way synchronous meth j SMI, so we won't des_cnbe them In this article. The stu_bs
invocations (SMI). In addition, AMI is important for real-time " asynchronous operations are different, however. In particu-

CORBA applications [7] because it helps to bound the amOlIth' the.y are givep the name of the corresponding synchronous
of time spent in ORB operationie., only the client process—Operat'on’ but with gendc- pre_f|x prepended.

ing time has to be considered when sending a request. This dé:_or example, an IDL gompner that supports.AMI would
coupling of client processing time from server operation exgenerate the following pair of stubs for oQuot er interface:
cution time helps to simplify real-time scheduling analysis [8]. ;; sual sM st ub.

. . . . . CORBA: : Long Stock:: Quoter::get_quote
The remainder of this article is organized as follows: Sec- (const char *stock_nane)

tion 2 presents an example that illustrates the CORBA AMI{ /* 1DL conpiler-generated SM stub code... */ }
callback programming model in more detail; Section 3 de-;; new AM stub (described bel ow).
scribes the C++ features, patterns, tools, and components usedi d St ock: : Quot er: : sendc_get _quot e

in TAO's IDL compiler to implement the CORBA AMI call- /(/St EEEI- Ym”d'qﬁgt g?ngﬁtdl reff ‘;f”ce
back model; and Section 4 presents concluding remarks. const char *stock_name)

{ /* 1DL conpil er-generated AM stub code... */ }

2 Programming the CORBA AMI In addition to having a slightly different name, the asyn-
chronoussendc_get _quot e operation has a different sig-

Callback Model nature than the synchronoget _quot e operation. In par-
ticular,sendc _get _quot e has no return value and is passed

In this section, we review how the AMI callback model workg, gpject reference to an application-defined subclass of the
from the perspective of a CORBA/C++ application deVe|0p%|lowing AM _Quot er Handl er :

The steps required to program CORBA AMI callbacks are

similar to the development of any CORBA applicatio®,, class AM _Quot er Handl er :

OMG IDL interface(s) must be defined and client code mustf@' i ¢ Messaging: : Repl yHandl er

written to use the generated stubs. Servers require no changes ca | back stub invoked by the client ORB

to work with AMI, however, because they are unaware of// to Idl Spaach the reply. B , |
whether a client invokes operations synchronously or asyny' ;i“?avggm?fg;?;g‘ngrgfe:fg\- tong am _ret e )
chronously [1]. Thus, the changes required to support AMI



The AM _Quot er Handl er is generated automatically by e Activation-per-AMI-call strategy: One way to distin-

an AMl-enabled IDL compiler; it determines where the reyuish separate AMI calls without requiring a separate object
ply from the server will be dispatched. Note that thger-invocation is to explicitly activate the same servant multi-

send_get _quot e method doesn’'t need a return valuple times in the client's POA. As described in [10], each acti-

because the value of the stock will be passed bagktion can be given a designated object id. Gle¢ _quot e

to the get _quot e callback operation defined by thecallback method can then examine this object id to determine
AM _Quot er Handl er shown above. For more informatiorto which invocation the reply belongs to, as follows:

on the AMI callback mapping rules for OMG IDL to C++,
please see [2].

usi ng namespace Port abl eServer;

class My_Async_St ock_Handl er

2. Implement the reply handler servant: Next, a client

public POA_Stock:: AM _Quot er Handl er

programmer must implement the reply handler servant by s%pm o

classing fromAM _Quot er Handl er, as shown below:

class My_Async_St ock_Handl er
publ i c POA Stock:: AM _Quot er Handl er

-
publi c:
/1 Call back nmethod prints stock val ue.
virtual void get_quote
(CORBA: : Long am _return_val) {
cout << am _return_val << endl;
}
H

Although this implementation is “correct” it isn’t very useful

since there is no way to distinguish callbacks resulting from

/1 Save the Current pointer

My_Async_St ock_Handl er (Current_ptr current)
current_ (Current::_duplicate (current))

{}

/'l Cal | back servant method.

virtual void get_quote

(CORBA: : Long am _return_val) {

/1 Get the object id used for current upcall.

Obj ectld_var oid =
current_->get_object_id ();

/'l Convert the Objectld to a string.

CORBA: : String_var stock_nane =
Objectld_to_string (oid.in ());

cout << stock_nane.in () << " ="

<< am _return_val << endl;

AMI calls to different stocks! The following are commorpri vat e:

strategies for addressing this problem:

¢ Servant-per-AMI-call strategy: Here’s a reply handler

/Il Store the POA Current to get fast access
/!l to the hjectld. Note that the Current
/1 can be assigned in one thread and

/'l used by another thread.

servant implementation that keeps track of which stock nam&©r t abl eServer:: Current_var current_;
it's associated with and prints out this stock name and stock

value returned the server in thet _quot e callback:

Before making AMI calls, we create a POA whose policies

allow the client to explicitly activate the same servant multiple

class My_Async_St ock_Handl er
publ i c POA Stock:: AM _Quot er Handl er

{
publi c:
My_Async_St ock_Handl er (const char *stocknane)
: stocknanme_ (CORBA: :string_dup (stocknane))
{}

/1 Call back servant mnethod.
virtual void get_quote
(CORBA: : Long am _return_val) {

cout << stockname_ << " ="
<< am _return_val << endl;

}

private:
CORBA: : String_var stocknane_;

H

Since theMy_Async_St ock_Handl er servant stores the
st ockname_that it's requesting it can easily distinguish call-
backs resulting from multiple AMI calls by simply instantiat-

ing a different servant for each AMI call. The drawback, of
course, is if there are many simultaneous asynchronous calls ;, ~.; e obj ect

the memory footprint of the client will increase.

times. Then, for each AMI call we create a special object id
that stores the stock name, as follows:

/1 A POAwith the USER_|ID and MULTI PLE_| D
/'l policies:
PCA var poa = ....;

/1 Ootain the POA Current object
CORBA: : Obj ect _var tnmp =

this->resolve_initial _references ("POACurrent");
Port abl eServer:: Current _var current =

Portabl eServer::Current:: _duplicate (tnp.in ());

/1 Initialize the servant
M/_Async_St ock_Handl er servant (current.in ());

/1 Make asynchronous two-way calls using
/1 the AM call back nodel .
for (int i =0; i < MAX_STOCKS; i++) {
/1 Convert the stock name into an Objectld.
Obj ectld_var oid =
string_to_Objectld (stocks[i]);

/1 Activate the Object with that Objetld
poa->activate_object_with_id (oid.in (),

&servant);
reference



CORBA: : Cbj ect _var tmp = The ACT would be initialized by the client to indicate a partic-
o hoa ?'A,‘\’A—t &‘{3?2?[—223?;0'\/2}' Ea%l) o ular AMI call and then passed to the server. The server would
Stock::AM_QuoterHandl er:: _narrow (tnp.in ()); Subsequently return th&CT unchanged as a parameter to the
/1 send th . reply handler servant. This handler could then mapNGE to
en e request. . .
quoter _ref - >sendc_get _quote (handler.in (), the assoma_ted actlons_ and state necessary to complete_ the re-
stocks[i]); ply processing. If the size of th&CT was smaller than the size
} of the stock name this strategy can reduce network bandwidth

a bit.
Although this approach is more complex to program, it is more

scalable than the servant-per-AMiI-call strategy because it uSé&P 3: Programming the client application: After the

a single servant for all asynchronous calls. However, bdfp- compiler generates the synchronous and asynchronous
strategies require an entry-per-AMI-call in the client POA's a8tubs, programmers can develop a client that works much the
tive object map. One way to reduce this overhead, therefgi@Me as any other CORBA application. For example, the client
is to use Servant Locators [11] that activate the client’s regHSt obtain an object reference to a target object on a server

handleron-demangthereby minimizing memory utilization. and invoke an operation. Unlike a conventional two-way SMI
call, however, when a client invokes a two-way AMI opera-

e Server-differentiated-reply strategy: An alternative tjon, it passes an object reference to a reply handler servant
strategy for differentiating multiple AMI calls requires a migs a parameter. This object reference is not sent to the server,
nor modification to the&uot er IDL interface. For instance, however. Instead, the client ORB stores it locally and uses it
anout parameter can be added to thet _quot e operation, to dispatch the appropriate callback operation after the server

as follows: replies to the client.

i nterface Quoter { The following code, excerpted from [2], illustrates how a
// Two-way operation to retrieve current _C++ programmer would program the AMI callback model us-
/1 stock val ue. ing the servant-per-AMI call strategy described earlier. First,

long get_quote (in string stock_nane, : :
out string stock name): we define aget _st ock_quot e function that makes AMI

3 calls:

I ssue asynchronous requests.

In this strategy, the server will return the stock name as a bé\fd get_stock_quot e (void)

rameter to thget _quot e callback, as follows: {
/'l Set the max nunmber of ORB stocks.

voi d static const int MAX_STOCKS = 3;

Async_St ock_Handl er: : get ote S
M_ ()(l:OQEA' “Long ami _ret Srn_\?gl /1 NASDAQ abbrevi ations for ORB vendors.

const char *stock name) { ’ static const char *stocks[ MAX_STOCKS] =
cout << stock_name << " =" {
D . "IONAY"  // 1 ONA O bi x
<< | << |

} am _return_va end!; "1 NPR" /1 Inprise VisiBroker

"I BM' /1 1 BM Conponent Broker
. o . "BEASYS" // BEA Wb Logic Enterprise
Thus, just one servant need be used to distinguish all the AM};

callbacks and it only needs to be activated once in the cllent§/ Reply handl er servants.
POA. My_Async_St ock_Handl er *handl er s[ MAX_STOCKS] ;
In general, however, the use of amit parameter is ob- .
. . . // Reply handl er object references.

trusive and incurs more network overhead in order to passy ock:: AM _Quot er Handl er _var

the stock name back to the client, compared with allocatinghand! er _r ef s[ MAX_STOCKS] ;

a different servant for each AMI call. One way to reduce (int i =0 i < MXSTOKS: i+4) {

this overhead is to use the Asynchronous Completion Token // |nitialize the servants.

(ACT) [12] pattern by adding small, fixed-siz@out param- haﬂgl ers[iA]s ;ch Stock_Handl er (stocks[i])
; W i1 -

eter to theget _quot e operation, as follows: W_Asynch_ - '

/1 Initialize object references (note that

interface Quoter { /1 _this() interacts with the client-side POA).
typedef short ACT; handl er _refs[i] = handlers[i]->_this ();
}
/1l Two-way operation to retrieve current
/1 stock val ue. /1 Make asynchronous two-way calls using
Il ong get_quote (in string stock_nane, /'l the AM cal |l back nodel .
i nout ACT act); for (int i =0; i < MAX_STOCKS; i++)
}s quot er _ref->sendc_get _quote (handler_refs[i],



stocks[i]); 3 IDL Compiler Support for CORBA
"o AMI Callbacks

/1 Clean up dynamically allocated resources.

}
Section 2 outlined how to program the AMI callback model

from a CORBA application developer’s perspective. This sec-
After making asynchronous invocations, a client typicalh/on exp|ains the C++ features, patterns, and Components used
performs other tasks, such as checking for GUI eventsgr TAO's IDL compiler to generate the stubs necessary to
invoking additional asynchronous operations. When tBgpport the AMI callback model. TAO is an open-sodrce
client is ready to receive replies from server(s), it enters tb@)RBA-compIiant ORB designed to address the quality of
ORB's event loop using the standardor k_pendi ng and service (QoS) requirements of high-performance and real-time
per f or mwor k methods defined in the CORBBRB inter-  gpplications [8]. Below, we present a general overview of
face, as follows: TAO's IDL compiler and explain how it generates C++ code

that implements AMI callbacks.

/1 Event loop to receive all replies as call backs.

while (/* ... */)
if b- k_pendi . , .
oo Sperformvork () 3.1 Overview of TAO's IDL Compiler
el se
[* ... potentially do something else ... */ An IDL compiler is a critical component of an ORB. It is re-

sponsible for mapping IDL input files intstuband skeleton

When a server responds, the client ORB receives the fi&SSes, which serve as a “glue” between the client and ser-
sponse and then dispatches it to the appropriate method’3S: respectively, and the ORB. Stubs implemenfifuxy
the reply handler servant so the client can handle the repgttern [13] and provide a strongly-typed, static invocation in-
In other words, the ORB turns the response into a requ@g{ace that marshals .appllcatlon parameters into a common
on the corresponding reply handler object reference pasg@g:l-level representation. Conversely, skeletons implement
to the ORB during the client's original invocation. Figure §'¢Adapterpattern [13] and demarshal the data-level repre-
illustrates how our client application uses the AMI Callbaci€ntation back into typed parameters that are meaningful to an

model. application. In addition, generated skeletons are responsible
for demultiplexing operation names carried in client requests
CALLBACK gende get quote(replyhandler, STOCK to their associated methods on servants.
QUOTE CLIENT - "IBM") QUOTER

hander — - ) The_ process ofltrani/llating OM?D:_DL into_lthe standelljrd f(|:++
et quote(value) : Stock_name @D mapping is complex. Moreover, compilers must be flex-
BD 3 di C—> D ible, e.g, in order to generate compiled and/or interpretive
+dispach 2 value [: (de)marshaling code that meets the needs of various types of
- applications [6]. In addition, the ORB and the IDL compiler
must collaborate to provide optimal performance for parame-
ter marshaling and demarshaling. For example, optimizations
in the ORB may trigger changes to its IDL compiler so that
In the example above, the client implements the reply h4iznerated code exploits the new features.
dler servant locally. Thus, after a reply arrives from the TAO’s IDL compiler parses IDL files containing CORBA
server, the client ORB invokes thget _quot e stub on the interfaces and data types, and generates stubs and skeletons,
AM _Quot er Handl er callback object. This stub marshalsgvhich are then integrated with application code, as shown in
the arguments and invokes the virtgalt _quot e method on Figure 4. Figure 5 illustrates the interaction between the in-
theMy_Async_St ock_Handl er reply handler servant. ternal components in TAO’s IDL Compiler. The front-end of
Note that a reply handler also can be identified by an objd&O’s IDL compiler parses OMG IDL input files and gen-
reference to a remote object. In this case, its servant will R§ates an abstract syntax tree (AST). The back-end of the

ceive “third-party” replies resulting from requests invoked gPMPpiler “visits” the AST to generate CORBA-compliant[14]
other clients. ++ source code. We describe the front-end and back-end of
TAQ'’s IDL compiler in more detail below.

Figure 3: AMI Callback Quoter Use-case

1In addition, if asynchronous replies arrive while a clieniblocked wait-
ing for a synchronous reply, the asynchronous reply can ygattihed in the 2The source code and documentation for TAO can be downloated f
context of the waiting client thread. www. ¢s. wust | . edu/ ~schmi dt/ TAO html .
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Figure 4: C++ Files Created by TAO’s IDL Compiler
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interface Quoter {
long get_quote
(in string stock_name);

s

:be_root

:be_interface

:be_operation

‘ :be_primitive ‘ ‘ :be_argument

class Quoter {
public:
virtual CORBA::Long
get_quote (const char *);
virtual void
sendc_get_quote
(AMI_QuoterHandler_ptr,
const char *);

and bug fixes. The following components are contained in
TAO'’s IDL compiler front-end:

OMG IDL parser: The parser is generated from a
yacc [15] specification of the OMG IDL grammar. The ac-
tion for each grammar rule invokes methods on AST node
classes to build the AST. The AST is stored in main memory
and shared between the front-end and the back-end.

Abstract syntax tree generator: Different nodes of the
AST correspond to different OMG IDL features. The front-
end defines a base class calk8T_Decl that maintains in-
formation common to all AST node types. Specialized AST
node classes, such AST_|I nt er f ace or AST_Uni on, in-

herit from this base class, as shown in Figure 6. In ad-
AST_Decl UTL. Scope
: AST_ AST_ AST_

AST_Field Constant| |0 = AST_Type Module AST_Root
AST_ AST_ AST_ AST_ AST_ AST_
EnumVal || Typedef | |InterfaceFwd| [©°"®**™¥Pq | Interface Enum

s | [

Attribute | TAST AST_ |[ AsT_|[ asT AST_

Predefined| | String Array | | Sequence| | Structure
AST_
[ | Argument f
— Unicﬁ?BTrEnch AST_ SIS
Exception | | Union

Figure 6: TAO's IDL Compiler AST Class Hierarchy

dition, the front-end defines theTL_Scope class, which
maintains scoping information, such as the nesting level and
the list of components that form a fully scoped nanesg,

St ock: : Quot er. UTL_Scope is a base class for all AST
nodes representing OMG IDL features that can define scopes,

Figure 5: Interactions Between Internal Components in TAGsch ast r uct s andi nt er f aces.

IDL Compiler

3.1.1 TAO'’s IDL Compiler Front-end Design

Driver program: The driver program invokes the helper
programs and directs the parsing and AST generation process.
First, it parses command-line arguments and invokes the C++
preprocessor to impo#ti ncl udes for each input file. Next,

TAO'’s IDL compiler front-end is a heavily modified extenit invokes the IDL parser on the C++ preprocessor output to
sion of the freely available SunSoft IDL compiler front-endjenerate the AST in-memory. Finally, the driver passes the
with many new CORBA features, portability enhancemen&sST to the back-end code generator.



3.1.2 TAO’s IDL Compiler Back-end Code Generator
Design

The original SunSoft IDL compiler front-end only parses
OMG IDL files and generates the corresponding abstract syn-
tax tree (AST). To create a complete OMG IDL compiler for ®
TAO, we developed a back-end for the OMG IDL-to-C++
mapping. TAO’s IDL compiler has been designed to be scal-
able and configurable to support various optimization tech-
niques [6]. For example, TAO’s IDL compiler back-end can
selectively generate C++ code that is optimized for (1) a GIOP
protocol interpreter [16] or (2) compiled (de)marshaling in
stubs and skeletons [6].

TAO’s IDL compiler back-end employs design patterns,
such as Abstract Factory, Strategy, and Visitor [13], that sim-
plify its design and implementation and allow it to gener-
ate stubs/skeletons that use either compiled or interpretive
(de)marshaling [6]. These patterns also make it easier to sup-
port new requirements, such as AMI stub generation as de-
scribed in Section 3.2. In addition, TAO’s IDL compiler back-
end employs thgper f perfect hash function generator [17],
which creates optimal operation demultiplexers automatically.e

Below, we describe how these patterns and tools were ap-
plied to resolve the key design challenges faced when devel-
oping TAO's IDL compiler back-end.

Enhancing IDL compiler back-end maintainability

e Context: An IDL compiler should be maintainable. For
example, it should be possible to add new features without re-
quiring extensive compiler modifications. Likewise, it should
be easy to debug the compilerg, if its generated code devi-
ates from the CORBA language mapping specifications.

e Problem: The SunSoft IDL compiler front-end that
forms the basis of TAO’s IDL compiler useyacc-generated
parser to build an AST representation from IDL input files.
Developers can add back-ends that generate code from the
AST by using the Strategy and Abstract Factory patterns [13],
as described below. Although these two patterns simplify the
creation of multiple back-ends and allow back-end developers
to control the AST representation, they do not, by themselves,
solve the following key design challenges:

¢ Need to know the exact type of a nodd\s the back-
end traverses the AST to generate code, the exact type of
the node being visited must be known. For example, the
declaration of an input argument will change depending

on the type of the argument. Basic IDL types, such ase Solution:

i f/ el se andswi t ch statements to detect the type of
node being processed and then (2) use a C++ downcast
operator to obtain node-specific information needed for
code generation.

Dependency of the mapping on the contexthe same
types of AST nodes can have different mappings depend-
ing on theircontext i.e., their location in the AST and
what portion of the code is being generated. For exam-
ple, the mapping of an object reference as the type of an
structure field i _var , whereas the mapping as an input
argument isT_pt r . Not all types follow the same rules.
For example, both a field and an input argument of type
short are mapped a8ORBA: : Shor t . Moreover, the
same input argument is used to generate the stub method
declaration, the skeleton declaration, and multiple times
to generate the definitions of the stub and the skeleton, in
each case with slightly different variations used. In gen-
eral, the type of the AST node and the context where the
node is used affects the C++ code emitted by TAO’s IDL
compiler.

Poor scalability of virtual methods A potential solution

to the problem outlined in the previous paragraph would
be to use virtual methods to represent each context. Each
node type could then override the virtual methods to gen-
erate the appropriate code. Unfortunately, virtual meth-
ods do not scale effectively as the number of different
contexts increases.

For instance, the SunSoft IDL compiler uses the same
node to represent an operation argument multiple times,
e.g, in the stub declaration, in the stub definition, before
marshaling the request, during the request marshaling,
and while demarshaling the reply. Likewise, this same
node is used multiple times for similar purposes in the
skeleton. The mapping also depends on whether the ar-
gument node representsian, i nout ,out ,orret urn
parameter.

Each time a different variation is required, the number of
virtual methods can increase. Although clever tricks can
be used to minimize the number of virtual methods, the
result is still overly complex. Moreover, an IDL compiler
can be a non-trivial software applicatiang, TAO’s IDL
compiler contains over 120,000 lines of code. Thus, if the
code generation logic for a particular context is spread
across the compiler source it may be hard to maintain.

The Visitor pattern [13] allows operations to

short andl ong are passed by value. Conversely, IDbe applied correctly to nodes in a heterogeneous object struc-

st ruct s are passed by reference. The original SunStfte,

such as an abstract syntax tree. This pattern is commonly

IDL compiler used downcasts to determine the exact typsed in languages that do not support “double dispatching,”
of an AST node. This mechanism was tedious and erroe., the polymorphic operations cannot depend on message ar-
prone, however, because it forced developers to (1) wrigements, only on the object receiving the message. We used



the Visitor pattern in the TAO IDL compiler’s back-end to remarshaling techniques are concentrated in the generation of
solve the following problems outlined above: the stubs and skeletoris., the generation of the header files

e Thetype of an AST node is determined easily because r(isnams unmodified.

the visitor has a different callback operation for each tyfhancing IDL compiler back-end flexibility

and (2) it receives the most derived type as an argument.

Other solutions, such as Interpreter [13], would requiree Context: An IDL compiler should be flexibleg.g,

the tedious downcasts described earlier. capable of being adapted to generate code with different

« Different contexts are represented by different visitorgpace/performance tradeoffs or even different language map-
Thus, it is easy to add more contexts as needed. The dailmgs, such as Java or C.

back method of each visitor can be used to treat each typg problem: End-users can select whether TAO's IDL
differently depending on its context. For example, TAOgmpiler generates interpretive or compiled (de)marshaling
IDL compiler uses an operation argument more than &fde on a per-file or per-operation basis [6]. This selection af-
times when generating the code for stubs and skeletoggts the generation of the stubs and skeleton methods, part of
Given the sheer number of contexts where a single Age AST_Oper at i on mapping, and requires the generation
node can be used, therefore, it would be inflexible t0 USECDR stream insertion and extraction operatoes, it adds
a single object to keep track of the current context.  new phases to the code generation process. Most of the code
¢ The code for each context can be found easily becaus@igenerate the stub and skeletdeclarationsremains un-
is isolated in a single visitor class. The code for a tygdanged, however. Although it is possible to generate a com-
in that context is also easily found by using the callbagietely different syntax tree for each case, this approach could
method. Checking a type across all contexts is slighttpause significant duplication of code because each change is
harder, but the names of the callback methods are unigéltively small.

enough that a simple tool likgr ep can locate them au- goiytion:  The Strategy pattern [13] provides an abstrac-
tomatically. tion for selecting one of several candidate algorithms and
¢ Changing the behavior of the IDL compiler only requirgsackaging these algorithms within an OO interface. We used
substituting the visitors involved. As we describe latethis pattern to allow different code generation algorithms to be
using the Abstract Factory pattern to create the visitasnfigured as visitors. By using the Strategy pattern, for in-
further simplifies these substitutions. stance, the only visitors that must be replaced to switch from
- . . compiled to interpreted code generation are those responsible
The Visitor pattern was appropriate because the actions REr- . : .
: Or generating stub and skeleton implementations. The gener-
formed on a particular AST node depend on both the conte{ct .
. . ation of IDL structures and sequences, stub declarations, and
where the actions occandthe type of the particular node. As g .
; ; i ) skeleton declarations remains unchanged.
we will see below, this solution also allows us to modify the
generated code by simply changing some of the visitors. Ensuring semantic consistency of complex, related strate-
To implement the Visitor pattern in TAO’s IDL compilergies

back-end, we added methods to our back-end AST nodes so
they could be traversed by visitor objects. A single visitor ¢ Context: Users can select different (de)marshaling
represents a particular context in the code generagay, techniques via command-line options. As described above,

whether to generate argument declarations or to marshalt|DL compiler uses the Strategy pattern to select different
arguments to generate a request. The visitor can consultyi¥tors that generate this code.

type of the node and generate proper code depending on its . -
c%pntext and type 9 prop P g e Problem: Many strategies and visitors must be replaced

Each visitor usually delegates part of its work to other vi then changlr_lg the sty_le_ of code generated by_ the complle;r. If
itors. For example, the compiler generates the method ded] se strategies and visitors are not changed in a semantically

rations for a skeleton class using one visitor, which delega?é)é]s'Stem manner, the generated code will not work correctly

to another visitor to generate the argument declarations. T‘?lng possibly will not even be valid input for for a C++ com-
decoupling between (1) the different contexts in the code g@rl\?r'

eration and (2) the types being processed allows us to cus Solution: The Abstract Factory pattern [13] provides a
tomize a particular task without affecting other portions of ttengle component that creates related objects. We applied ab-
IDL compiler. For example, TAO’s IDL compiler supportstract factories in the TAO IDL compiler’s back-end to localize
both compiled and interpretive marshaling. By using the Vilie construction of the appropriate visitors, as shown in Fig-
itor pattern, however, most of the differences between thase 7. Controlling the creation of visitors using the Abstract



Abstract Abstract matches the operation name passed with the incoming client

Visitor Factory Visitor request in constant time.
visit_interface () =0
visit_operation () =0

make_visitor() = 0 Solution: To generate constant time operation demulti-

p { plexers, the TAO IDL compiler’'s back-end usgger f [17],
- Interpretive which is a freely available perfect hash function generator dis-
Interpretive Visitor I tributed with the TAO release. Thgperf tool automati-
|| Msitor Factory e —— . cally generates a perfect hash function from a user-supplied
make_visitor() - -- | 72215l Visit_operation () list of keyword strings. The generated function can determine
whether an arbitrary string is a member of these keywords in
: Compiled T constant time. Figure 9 illustrates the interaction between the
Compiled Visitor I TAO IDL compiler andgper f . TAO's IDL compiler invokes
| Visitor Factory —
visit_interface ()
make_Visitor() ---{creates — {p- visit_operation ()
| TAOIDL | o S
PROCESS CODE
Figure 7: Creating Visitors in TAO's IDL Compiler Using Ab- SERVER

INTERFACE

stract Factories
OPERATIONS SKELETON

PERFECT

Factory pattern allows CORBA application programmers to
. . CHILD HASH
make a wholesale selection of alternative stubs and skeletons PROCESS NGNS
implementations. Moreover, this pattern makes it straightfor-
ward to disable certain features, such as the generation of infigyre 9: Integrating TAO’s IDL Compiler and GPERF
sertion and extraction operators to and fr@ORBA: : Any
objec_ts, the generation of |mplementat|9n templates where ferf asa co-process to generate an optimized lookup strat-
user inserts new code, and the generation of AMI stub code 1o . : .
; S egy for operation names in IDL interfaces.
reduce the footprint of applications that do not use AMI fea-
tures.

Figure 10 plots operation demultiplexing latency as a func-
tion of the number of operations. This figure indicates that
Optimizing operation demultiplexing in skeletons

@ Perfect Hashing

e Context: Once an ORB’s Object Adapter identifies the 25
correct servant for an incoming CORBA request [18], the nex
B Dynamic Hashing

step is for the generated skeleton to demultiplex the request 1 20 I S Linear Search

OBinary Search

the correct operation within the servant. Figure 8 illustrates

operation demultiplexing. 0
— >
[ > operationl() § —
Ei
INCOMING § > operation2() -
OPERATION | & -
> = > operation3()
operationK()| & o
é + SERVANT
A —|( operationN() 20

No. of Methods 50
Figure 8: Operation Demultiplexing in Skeletons Figure 10: Operation Demultiplexing Latency with Alterna-
tive Search Techniques

¢ Problem: For ORBs like TAO that target real-time em-
bedded systems, operation demultiplexing must be efficiehie perfect hash functions generateddper f behave pre-
scalable, and predictable [18]. This requires the skeleton gdittably and efficiently, outperforming alternatives such as dy-
erated by TAO'’s IDL compiler to locate the C++ method thatamic hashing, linear search, and binary search.



3.2 Overview of IDL Compiler C++ Code Gen- design would either require (1) multiple new visitors with spe-
eration cial mapping rules for each node type or (2) more state to be

maintained in each node to indicate how it should be used. In

Now that we've outlined the components and patterns 4Ry case, the complexity of the IDL compiler implementation

for AMI callbacks?®
2. Two-pass file-based strategy: One way to reduce

some complexity of the one-pass strategy is to modify the
IDL compiler to run in two passes. The first pass transforms
An IDL compiler that supports the CORBA AMI callbackhe original IDL file into an implied-IDL temporary file. The
model is responsible for mapping OMG interfaces to so-callégcond pass then reads this temporary file and generates C++
“implied-IDL” interfaces [2]. Each implied-IDL interface con-stubs and skeletons. Unfortunately this solution is not practi-
sists of thesendc_ operation for each two-way operatiorﬁlaj in many environments. For instance, in platforms that do

and the reply handler interface corresponding to each interf@é support namespaces the code for the AMI reply handlers
found in the original IDL file. For instance, the implied-IDLMust be inserted into the same scope where the stub classes are

3.2.1 Generate Implied-IDL

for ourQuot er IDL example is shown below: generated. Such an approach would require generating a com-
_ plete implied-IDL file, and then taking the generated code and
/1 1nplied-1DL inserting some portions of it in different scopes of the gener-
nodul e St ock . Lo . .
{ ated code. This design is hard to implement and increases the
interface Quoter { time the IDL compiler requires to generate code.
/1 Original two-way operation.
long get_quote (in string stock_nane); 3. Two-pass memory-based strategy: One way to avoid
/1 Inplied asynchronous operation. the slow processing time of a two-pass file-based IDL com-
voi d sendc_get _quote piler is to make an additional pass over the AfBimemory
(in AM_Quot er Handl er handl er, before generating C++ code. During this second pass, addi-
in string stock_nane); . . . L
}: tional nodes can be inserted into the existing AST to represent

the implicit-IDL constructs that support AMI. The second pass
can be implemented using new visitors that iterate over the tree

/1 Inplied type-specific callback ReplyHandl er. and add the new entities.
interface AM _Quot erHandl er :
Messagi ng: : Repl yHandl er {

...

[1 Gallback for reply. = . . Implementing the two-pass memory-based strategy in
get_quote (in fong am _return_val); TAO: TAO’s IDL compiler uses the third strategy outlined
... above to generate C++ code corresponding to implied-IDL.
b We selected a two-pass memory-based strategy because it (1)

b ran faster than the two-pass file-based strategy, (2) involved

) _ o fewer intrusive changes to TAO’s existing SMI IDL compiler
Alternative strategies for generating implied-IDL: There design, and (3) provided a more scalable framework for the
are several strategies for modifying an existing SMI IDL COMyolling model (which requires implied-IDL constructs), as
piler to generate the mapping code for implied-IDL AMI inye|| s for future OMG IDL extensions, such as the CORBA
terfaces: Components Model [19].

1. One-pass memory_based strategy:An IDL com- To implement two-pass memory—based |mpI|ed-IDL AST
piler's existing SMI code generation logic can be modific@eneration, we enhanced TAO's existing SMI IDL compiler to
to produce AMI stubs at the same time as it produces thge several interface and operation strategies and a new AMI
SMI stubs. This solution leverages existing IDL compiler fedmplied-IDL “preprocessing visitor.” This preprocessor visitor
tures. However, it requires the modification of existing AS® executed immediately after the AST created by the front-
nodes to represent multiple IDL constructs. For example, id of the IDL compiler is passed to the back-end. For every
node that represents ant er f ace would also represent theimp|i6d-|DL construct one of the fO”OWing three techniques is
Repl yHandl er for thati nt er f ace. Likewise, the node then used by the preprocessing visitor to generate the implied-
representing an operation must also representstnedc_ DL code.

method and the callback operation on the reply handler. Such & Insert This technique inserts new nodes into the

3To save space, we do not discuss AMI exception handling [#imarti- AST_- Each node .corresponds. to a pr?lrticuliar type of AMI
cle. implied-IDL. For instance, this technique is used for all
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Repl yHandl er s because they need normal stubs and ske3e2.3 Generate Reply Handler Classes

tons. . . ' .
For each interface in the IDL file, the IDL compiler gener-

2. Strategize: This technique app"es Strategies on exisﬂ_ﬂes an interface-specific reply handler that inherits from the
ing nodes to trigger additional code generation, rather than$tandardvessagi ng: : Repl yHandl| er base class. The
serting new nodes into the AST. For example, sfendc_ client ORB can use this subclass to dispatch server replies
operation cannot be inserted in the AST because that woi@depplication-defined reply handler servants. For example,
also generate a corresponding operation in the skeleton Higiclient stub header file generated by TAO’s IDL compiler
thesendc_ operation must be visible only on the client. Usfor theQuot er interface contains the following reply handler
ing the Strategy pattern solves this problem cleanly withdiieleton, with the methods shown:
requiring major changes to the IDL compiler’s design. namespace St ock

{
3. Insert and strategize: This technique is a combination cl ass QIM _QJNgterHand! ?rR vhandl

of the two previous ones. Some nodes representing the implied * P/ 1 ¢ FE95891 G- - FERTYFRRCLEr
IDL code are inserted into the tree. Other code is generategubl i c:
using strategies that modify the behavior of some visitors. For // Repl'y handl er reply-stub.

. . static void get_quote_reply_stub
example, the reply handler operations are inserted, but also (| nput _CDR reply_buffer,
strategized to generateply-stubswhich are described below. AM _Quot er Handl er _ptr reply_handler);

/'l Call back stub invoked by Cient ORB

. /1l to dispatch the reply.
3.2.2 Generate Stubs for Asynchronous Invocations virtual \,gi d get_qumg Y

) ) ) ) (CORBA: : Long ami _return_val);
For each two-way operation defined in an IDL interface, an};
IDL compiler generates the correspondisgndc_ method b

used by client applications to invoke AMI operations. The firgshe get _quot e_r epl y_st ub and get _quot e methods

argument of aendc_ operation is an object reference to thgre stubs generated automatically by TAO’s IDL compiler, as
reply handler, followed by then andi nout arguments de- gescribed below.

fined in the signature of the original two-way IDL operatiorh
The return type for thsendc_ operation isvoi d because N

the stub returns immediately without waiting synchronousiy .. . .
y g sy ation. For two-way SMI calls, this stub is always blocked

for“ih(()ausrg:/gtr feor rzplyllication for examole. the IDL com ilerin the activation record waiting for the server’s reply. AMI
enerates theendgp ot u’ot e stub pme'thod in the CIE,_mtdispatching is more complex, however, because the stub that
gource file as outlin;eg d be_?OW' invoked the operation goes out of scope after the request is

sent and control returns to the client application. Thus, for
two-way AMI calls, the stub does not block waiting for the

ply-stubs: SMI dispatching is straightforward because
marshaling is performed by the stub that invoked the op-

/1 Stub for asynchronous invocations.

voi d Stock::Quoter::sendc_get_quote server’s replyt
//St ReEI_ ymndl ertOll?JHZ(r:ltdl rffeifnfe 'y hand! er As shown in Figure 11, when an AMI reply arrives, the
gongf char *—S;gcﬁ_nm)e —Ptr repty_nandier., client ORB must demultiplex to the reply handler servang(
{ My_Async_St ock_Handl er) defined by the client applica-
/1 Step 1. Marshal arguments. tion developer, demarshal the arguments, and dispatch the ap-
request _buffer << stock_nane; . X .
propriate callback methode(g, get _quot e). To simplify
H Stgp t2 bStet UE cglnnecti Iom ftgre, ReltolhyFbogg' er the demultiplexing and dispatching of asynchronous replies,
Asynch._ I nvocati on i nvocation o TAO's IDL compiler generates a concrete static method for
(reply_handl er each two-way AMI operation. These methods, which we call

ff;gg';t M Fg’;’? erHandler::get_quote_reply_stub, rep|y._stuts, perform the following steps: (1) declare the pa-
- ’ rameters corresponding to signature of the operation, (2) de-

/1 Step 3. _Sendkrequ?st to server and return. marshal the reply, (3) invoke the callback method on the reply
I nvocation.invoke () handler provided by the client, and (4) clean up any dynami-
/1 Note: No demarshaling necessary. cally allocated memory used to process the reply. In contrast,

}

4This also makes it hard for the ORB to react IGDCATION_FORWARD

. . . . GIOP messages. The current version of the CORBA Messageuifisation
We will examine each of these steps in more detail in & Subg§ss not mention how to solve this issue, though future ersshopefully

guent article. will.
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v 1- sena method(...) :REPLY_HANDIER | callback operation is the result of the asynchronous operation,
:STUB “forwar : ollowe all theout andi nout arguments define e
S T-f d 7-upcal followed by all theout and t arg ts defined by th
| e U e |‘_I : two-way operation in the original IDL interface. .
> et - | RepLy-Stu The reply handler servants follow the same rules required to
-oete TG' el implement any CORBA objects. For instance, users must ac-
3marshd arguments : tivate their reply handler servants within a POA and the ORB
: |:REPLY DISPATCHER| : : ;
must invoke operations transparently on object references to
‘4195‘(1 request Sireceivereply remote or local reply handlers. Thus, an IDL compiler must
CA:_LBACK | TARGET generate gll the code for implied-IDL that is required for any
CLENT V' <«—0 OBJECT other IDL interface.
-

_ > For theQuot er interface, the TAO IDL compiler gener-
0 operation(callback, args) [ | ates thaget _quot e callback method shown in the first code
o— |

: fragment in Section 3.2.3.

Figure 11: Client ORB Interactions for an Asynchronow2.4 Generate Reply Handler Servant Skeletons

Twoway Operation )
An OMG IDL compiler that supports CORBA's AMI callback
model must also generate skeletons for reply handler inter-
SMI stubs are much simpler; they simply demarshal the refiaiges. These reply handler skeletons contain methods whose
into the parameters provided by the caller and return contgtgnatures define the result arguments, the return value,
to the client application. followed by theout andi nout arguments of the original
When sending a request, tis@ndc_ stub for an AMI two-way operation.
call passes the client ORB a pointer to the reply-stub methodhs with regular IDL, each two-way operation in an implied-
and a pointer to the reply handler servant. When the fBL interface generates a static reply handler servant skeleton
ply arrives from the server, the client ORB passes the rephgthod. This method performs the following steps: (1) allo-
buffer and the reply handler servant to this reply-stub. Feates memory for the arguments, (2) demarshals the request
instance, when TAO’s IDL compiler parses thet _quot e into those arguments, and (3) dispatches the operation through

operation of theQuot er interface, it generates the followthe POA. In general, skeletons for reply handlers are simpler
get _quot e_r epl y_st ub method in the client stub sourcéhan skeletons for general IDL interfaces because they have no

I

file: return values or output arguments. Moreover, they only have
i n arguments, which are derived from the return value and any

I (Ij?epl y handler reply-stub. i nout andout arguments defined in the original operation.

Vol . . . .

Stock:: AM _Quot er Handl er: : get _quote_reply_stub TAO applies the same col!ocatlon optimizations [20] for
(I nput _CDR reply buffer, AMI reply handlers as it applies for conventional SMI stubs

( AM _Quot er Hand| er_ptr reply_handl er) and skeletons. These optimizations are particularly important
/1 Step 1. Result arguments. for AMI because reply handlers are most commonly collo-
CORBA: : Long ani _return_val ; cated with the client ORB. In this case, no extra marshaling
/I Step 2. Demarshal results from <reply buffer> and/or demarshaling steps are needed to process the reply. To
/1 using CDR extraction operators. support remote reply handlers, however, an ORB must be able
reply_buffer >> am _return_val; to generate requests while processing a reply. Thus, it must be
/I Step 3. Call reply handler callback method via reentrantand allow new requests to be dispatched by the ORB
/1 its reply-stub. Core.

reply_handler->get_guote (am return_val); For theQuot er interface,Repl yHandl er servant code

/] Step 4. Performany needed cleanup activities. genreated by TAO’s IDL compiler in the client-side header file
} is defined as follows:

This reply-stub performs the four steps outlined earlier. ?amespace POA_St ock

cl ass AM _Quot er Handl er

Stubs for reply handler servant callback operations: oubl i G POA Messagi ng: : Repl yHandl er

These stubs are invoked by the reply-stubs on behalf of the -
client ORB. They maksynchronousnvocations on the reply public: ,

handler servant to dispatch the reply to the appropriate call- 7/ Esrerer}'hggﬂa{)ycii : Zﬁfkdggrggegwg be
back operationd.g, get _quot e). The first argument in the virtual void get_quote
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In a subsequent article, we will discuss the various compo-
nents an ORB should supportin its run-time architecture to im-
plement the AMI callback functionality. We'll also show per-
formance results that demonstrate the benefits of using AMI
versus the SMI and DIl deferred synchronous models.
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