
Design and Implementation of an Asynchronous
Invocation Framework for Web Services

Uwe Zdun1, Markus Voelter2, and Michael Kircher3

1 Department of Information Systems, Vienna University of Economics, Austria
zdun@acm.org

2 voelter – Ingenieurbro für Softwaretechnologie, Germany
voelter@acm.org

3 Siemems AG, Corporate Technology, Software and System Architectures, Germany
michael.kircher@siemens.com

Abstract Asynchronous invocations are an important functionality in the con-
text of distributed object frameworks, because in many situations clients should
not block during remote invocations. There should be a loose coupling between
clients and remote services. Popular web service frameworks, such as Apache
Axis, offer only synchronous invocations (over HTTP). An alternative are mes-
saging protocols but these implement a different communication paradigm. When
client asynchrony is not supported, client developers have to build asynchronous
invocations on top of the synchronous invocation facility. But this is tedious,
error-prone, and might result in different remote invocation styles used within
the same application. In this paper we build a framework using patterns for
asynchronous invocation of web services. The framework design is based on the
asynchrony patterns and other patterns from the same pattern language.

1 Introduction

In this paper we discuss the problem of asynchronous invocation of web services. Al-
though there are many kinds of distributed object frameworks that are called web ser-
vices, a web service can be described by a set of technical characteristics, including:

– The HTTP protocol [7] is used as the basic transport protocol. That means, remotely
offered services are invoked with a stateless request/response scheme.

– Data, invocations, and results are transfered in XML encoded formats, such as
SOAP [4] and WSDL [6].

– Many web service frameworks are extensible with other transport protocols than
HTTP.

– The services are often implemented with different back-end providers (for instance,
a Java class, an EJB component, a legacy system, etc.).

Advantages of this approach to invoke  [16] are that web services provide
a means for interoperability in a heterogeneous environment. They are also relatively



easy to use and understand due to simple APIs, and XML content is human-readable.
Further, firewalls can be tunneled by using the HTTP protocol. In the spirit of the origi-
nal design ideas of XML [5] (and XML-RPC [18] as the predecessor of today’s standard
web service message format SOAP) XML encoding should also enable simplicity and
understandability as a central advantage. However, today’s XML-based formats used in
web service frameworks, such as XML Namespaces, XML Schema, SOAP, and WSDL,
are quite complex and thus not very easy to comprehend.

Liabilities of the approach are that the functionality of current web service frame-
works is relatively limited compared to other standard middleware. The string-based,
human-readable transport formats are bloated compared to more condensed (binary)
transport formats. This results in larger messages and a more extensive use of net-
work bandwidth. Also more processing power is consumed because XML consists of
(human-readable) strings for identifiers, attributes, and data elements. String parsing
is more expensive in terms of processing power than parsing binary data. The HTTP
protocol may also cause some overheads because it is not as optimized for distributed
object communication as protocols specifically designed for this task.

Many web service frameworks, such as Apache Axis [3], only allow for syn-
chronous invocations (for synchronous transport protocols such as HTTP). That means
the client process (or thread) blocks until the response arrives. For client applications
that have higher performance or scalability requirements the sole use of blocking
communication is usually a problem because latency and jitter makes invocations un-
predictable. In such cases we require the client to handle the invocation asynchronously.
That means, the client process should resume its work while the invocation is handled.
Also the intended loose coupling of web services is something that suggests asyn-
chronous invocations, that is, the client should not depend on the processing times of
the web service. Note that various messaging protocols are integrated with web ser-
vices, such as the use of Java Messaging Service (JMS) in Axis and WSIF [2], JAXM,
or Reliable HTTP (HTTPR) [10]. These protocols provide asynchrony at the transport
protocol level. They are more sophisticated than simple asynchronous invocations (e.g.
they support reliability of message transfers as well) and use a different communica-
tion paradigm than synchronous transport protocols. Under high volume conditions,
messaging might incur problems such as a bursty and unpredictable message flow.
Messages can be produced far faster than they can be consumed, causing congestion.
This condition requires the messages to be throttled with flow control. In this paper,
we do not directly deal with messaging protocols, even tough it is possible to use a
messaging protocol in the lower layers of our framework design.

Hard-coding different styles of asynchronous invocation into a client application
by hand for each use is tedious, error-prone, and results in different styles of invoca-
tion. Instead one invocation model should be offered to the developer that supports all
invocation variants with a simple and intuitive interface. In this paper, we present an
asynchronous invocation framework for Apache Axis. Its design is based on a set of
asynchrony patterns [17] to fulfill the specific client-side requirements for integrated
asynchronous invocation in the web service context (on top of HTTP). The framework
is designed to be easily adapted to other web service frameworks and/or other syn-
chronous (or asynchronous) transport protocols.



The paper is structured as follows: First we give an overview of the goals of an
asynchronous invocation framework in the context of web services. Next we present the
asynchrony patterns from [17] briefly. Then we discuss the design of an asynchronous
invocation framework for Apache Axis and compare its performance with synchronous
invocations. Finally, we present some related work and conclude.

2 Goals of an Asynchronous Invocation Framework in the Context
of Web Services

There are a number of issues about web services because of the limitation to syn-
chronous invocations only. To avoid hard coding asynchronous invocations in the client
code, we provide an object-oriented framework [11] to offer a flexible and reusable
software implementation. In particular our framework aims at the following issues:

– Better Performance of Client Applications: Asynchronous invocations can lead to
better performance of the client application, as we can avoid idle times waiting for
a blocking invocation to return. This is specifically important because handling of
XML encoding and HTTP is not the fastest variant of remote invocation.

– Simple and Flexible Invocation Model: A simple invocation model should be of-
fered to client developers. Asynchronous invocation should not be more compli-
cated to use than synchronous invocation. That is, the developer should not have to
deal with issues such as multi-threading, synchronization, or thread pooling.

– Support for multiple Web Services Implementations and Protocols: The strength of
web services is heterogeneity, thus an asynchronous invocation framework should
(potentially) work with different protocols (such as JMS or Secure HTTP) and im-
plementations. If the invocation framework can be built on top of an existing web
service framework (that already integrates different protocols), then they are auto-
matically integrated in the invocation framework as well.

– Avoiding the Use of Messaging Protocols: Messaging protocols such as JMS or
HTTPR can provide asynchrony on the protocol level. To provide for heterogene-
ity, web services should not depend on a special protocol such as JMS, but all
required functionality should be provided for all supported protocols. For instance,
if asynchrony is required and HTTP should be used for firewall tunneling, then
asynchrony should be provided for HTTP natively.

– Client as a Reactive Application: Some clients are reactive applications, such as
GUI applications or servers that are clients to other servers. In such reactive clients
a blocking invocation is not possible because that would mean to block the reactive
event handling as well. A blocking server or GUI is usually not acceptable.

3 Client Asynchrony Patterns

In this section, we present a set of client asynchrony patterns [17] that are part of a
larger pattern language for distributed object communication1 (see also [16]).

1 The complete pattern language will be published in a book entitled “Remoting Patterns” in
Wiley’s pattern series in 2004.



A pattern2 is a proved solution to a problem in a context, resolving a set of forces.
Each pattern is a three-part rule, which expresses a relation between a certain context, a
problem, and a solution [1]. A pattern language is a collection of patterns that solve the
prevalent problems in a particular domain and context, and, as a language of patterns,
it specifically focuses on the pattern relationships in this domain and context. As an
element of language, a pattern is an instruction, which can be used, over and over again,
to resolve the given system of forces, wherever the context makes it relevant [1].

The client asynchrony patterns are in particular:

–   : In many situations, a client application needs to invoke an opera-
tion on a  simply to notify the  of an event. The client
does not expect any return value. Reliability of the invocation is not critical, as it
is just a notification that both client and server do not rely on. When invoked, the
  sends the invocation across the network, returning control to the caller
immediately. The client does not get any acknowledgment from the 

receiving the invocation.
–   :    is a useful but extreme solution in the sense that

it can only be used if the client can really afford to take the risk of not noticing
when a remote invocation does not reach the targeted . The other
extreme is a synchronous call where a client is blocked until the remote method
has executed successfully and the response arrives back. Sometimes the middle of
both extremes is needed. The client sends the invocation, as in  ,
but waits for a reply from the server application informing it about the successful
reception, and only the reception, of the invocation. After the reply is received by
the , it returns control to the client and execution continues. The server
application independently executes the invocation.

–  : There are situations, when an application needs to invoke an opera-
tion asynchronously, but still requires to know the results of the invocation. The
client does not necessarily need the results immediately to continue its execution,
and it can decide for itself when to use the returned results. As a solution

 receive the result of remote invocations on behalf of the client. The client
subsequently uses the  to query the result. It can either just query (poll),
whether the result is available, or it can block on the  until the result be-
comes available. As long as the result is not available on the , the client
can continue asynchronously with other tasks.

–  : The client needs to be actively informed about results of asyn-
chronously invoked operations on a . That is, if the result becomes
available to the , the client wants to be informed immediatly to react on
it. In the meantime the client executes concurrently. A callback-based interface for
remote invocations is provided on the client. Upon an invocation, the client passes
a   object to the . The invocation returns immediately
after sending the invocation to the server. Once the result is available, the

 calls a predefined operation on the callback object, passing it the result of the
invocation.

2 We present pattern names in font.



Table 1 illustrates the alternatives for applying the patterns. It distinguishes whether
there is a result sent to the client or not, whether the client gets an acknowledgment or
not, and, if there is a result sent to the client, it may be the clients burden to obtain the
result or it is informed via a callback.

Client Asynchrony PatternResult to clientAcknowledgment to clientResponsiblity for result
   no no -

   no yes -
  yes yes Client is responsible

for getting the result
  yes yes Client is informed

via a callback

Table 1.Alternatives for applying the patterns

4 Design and Implementation of an Asynchronous Invocation
Framework for Apache Axis

In this section, we explain a framework design to implement the client-side asynchrony
patterns, explained in the previous section, in a generic and efficient way for a given
web service implementations. We use the popular Apache Axis framework for our im-
plementation in Java, though the general framework design can also be used with other
web service implementations.

4.1 Client Proxies

Our general design relies on the  pattern [16]. A  is provided
as a local object within the client process that offers the ' interface and
hides networking details. Client proxies can dynamically construct an invocation, or
alternatively they can use an  [16] (such as WSDL). In our de-
scription, we first concentrate on  that build up a remote invocation at
runtime. We also discuss how to use the stubs that are automatically generated from
WSDL in an asynchronous  in Section 4.6.

In our framework, we provide two kinds of , one for synchronous in-
vocations and one for asynchronous invocations. Both use the same invocation scheme.
The synchronous  blocks the invocation until the response returns. Thus it
is just a wrapper to the ordinary  of the Axis framework for convenience.
A client can invoke a synchronous  by instantiating it and waiting for the
result:
SyncClientProxy scp = new SyncClientProxy();
String result =

(String) scp.invoke(endpointURL, operationName, null, rt);



This  simply instantiate a handler for dealing with the invocation, and after
it has returned, it returns to the client.

The asynchronous  is used in a similar way. It offers invocation meth-
ods that implement the four client asynchrony patterns discussed in the previous sec-
tion. For this goal a client invocation handlers, corresponding to the kind of invoca-
tion, is instantiated in its own thread of control. The general structure of asynchronous
invocation is quite similar to synchronous invocation. The only difference is that we
pass anAsyncHandler and clientACT as arguments and do not wait for a result
(AsyncHandler and client invocation handlers are described in the next sections in
detail):

AsyncHandler ah = ...;
Object clientACT = ...;
AsyncClientProxy ascp = new asyncClientProxy();
ascp.invoke(ah, clientACT, endpointURL, operationName, null, rt);

Note that theclientACT field is used here as a pure client-side implementation of
an   (ACT) [15]. The ACT pattern is used to let clients
identify different results of asynchronous invocations. In contrast to theclientACT

field, the ACT (in the description in [15]) is passed across the network to the server,
and the server returns it to the client together with the result. We do not need to send
theclientACT across the network here because in each thread of control we use syn-
chronous invocations and use multi-threading to provide asynchronous behavior. We
thus can identify results by the invocation handler that has received it (or, more pre-
cisely, on basis of its socket connection). This handler stores the associatedclientACT

field.

4.2 Client Invocation Handlers

In the case of a synchronous invocation, invocation dispatching and subsequent invo-
cation handling do not need to be decoupled. This is because the invoking process (or
thread) blocks until the invocation is completely handled. In contrast, asynchrony means
that multiple invocations are handled in parallel, and the invoking thread can continue
with its work while an invocation is handled. Therefore, invocation dispatching and
invocation handling should be decoupled.

Synchronous and asynchronous invocation handling is performed by different kinds
of invocation handlers. These, however, require the same information about the invoca-
tion, such as endpoint URL and operation name as web service IDs, an argument list,
and a return type. Also constructing aCall from these information is common for all
different kinds of invocation handlers (see Figure 1).

The synchronous invocation handler mainly provides a methodinvoke that syn-
chronously invokes the service constructed withconstructCall . The invocation re-
turns when the response arrives.

The asynchronous invocation handler (AsyncInvocationHandler ) implements
theRunnable interface. This interface indicates that the handler implements a variant



ClientInvocationHandler

String endpointURL
String operationName
Object[] arguments
QName returnType

Call constructCall ()
...

SyncInvocationHandler

Object invoke ()
...

AsyncInvocationHandlerFireAndForgetHandler

void run ()
...

void run ()
...

Object clientACT;

Runnable
«interface»

AsyncHandler
«interface»handlerObj

0..* 1

AsyncClientProxy

void invoke (...)
...

«instantiate»

1 0..*

Figure 1. Invocation Handlers

of the pattern [8] that can be invoked in the handler’s thread of control using
a methodrun . The classAsyncInvocationHandler associates a handler object to
hand the result back to the client thread. It also contains aclientACT field that stores
the    supplied by the client. Usually, the field is used
identify the invocation later in time, when the response has arrived.

The AsyncInvocationHandler decides on basis of the kind of handler object
which asynchrony pattern should be used, ,  , or  

 (see Section 4.4). The decision is done using Java’sinstanceof primitive.

Finally,    is implemented in its own invocation handler class (see next
Section).

4.3 Fire and Forget Invocations

The   pattern is not implemented in the classAsyncInvocationHandler

(or as a subclass of it) due to a specialty of web services: the WSDL standard [6] that is
used for interface description of web services supports so-called one-way operations.
These are thus implemented by most web service frameworks that support WSDL.
Therefore, we do not implement   with theAsyncInvocationHandler

class, but use the one-way invocations to support   operations. All in-
vocations dispatched by theAsyncInvocationHandler class are request-response
invocations.

A    invocation executes in its own thread of control. The 

 invocation simply constructs theCall , performs the invocation, and then the
thread terminates.

A    invocation is invoked by a specialinvokeFireAndForget

method of theAsyncClientProxy class:



AsyncClientProxy clientProxy = new AsyncClientProxy();
clientProxy.invokeFireAndForget(endpointURL, operationName,

null, rt);

:AsyncClientProxy

invokeFireAndForget()

client

new

execute()

:FireAndForgetInvocationHandler

async: run()

:Call

constructCall()

new

invokeOneWay()

Figure 2. Fire And Forget Dynamics

Figure 2 shows the dynamic invocation behavior of a   invocation.

4.4 Asynchrony Pattern Handlers

To deal with the asynchrony patterns ,  , or  

 the client asynchrony handler typesResultCallback , PollObject , and
SyncWithServer are provided. These are instantiated by the client and handed over
to the  (for instance, in theinvoke method).

The asynchronous  handles the invocation with anAsyncInvocationHandler .
Each invocation handler runs in its own thread of control and deals with one invocation.
A thread pool is used to improve performance and reduce resource consumption (see
Section 5.1). The client asynchrony handlers are sinks that are responsible for holding
or handling the result for clients.

For an asynchronous invocation, the client simply has to instantiate the required
client asynchrony handler (a class implementing one of the following interfaces:
ResultCallback , PollObject , or SyncWithServer ) and provide it to the

' operationinvoke . This operation is defined as follows:

public void invoke(AsyncHandler handler, Object clientACT,
String endpointURL, String operationName,
Object[] arguments, QName returnType)

throws InterruptedException {...}



The parameterhandler determines the responsible handler object and type. It can be
of any subtype ofAsyncHandler . clientACT is a user-defined identifier for the invo-
cation. The client can use theclientACT to correlate a specific result to an invocation.
The four last arguments specify the service ID, operation name, and invocation data.

For instance, the client might invoke a  by first instantiating a corre-
sponding handler and then providing this handler toinvoke . Subsequently, it polls the
  for the result and works on some other tasks until the result arrives:

AsyncClientProxy clientProxy = new AsyncClientProxy();
SimplePollObject p = new SimplePollObject();
clientProxy.invoke(p, null, endpointURL, operationName,

null, rt);

while (!p.resultArrived()) {
// do some other task ...

}
System.out.println("Poll Object Result Arrived = " +

p.getResult());

Note that theclientACT parameter is set tonull in this example because we can use
the object reference inp to obtain the correct .

The pre-defined client asynchrony handlers and interfaces are depicted in Figure 3.

The client asynchrony handlers that are informed of the results run in the invoking
thread. To enable synchronization of the access from different threads (and clients) we
apply the  pattern [15], which is supported by Java’ssynchronized

language construct. The operations of each client asynchrony handler are synchronized
and the access is scheduled.

Figure 4 shows the dynamic invocation behavior of a  invocation. The
dynamics of handling a  are identical, with the exception that a

 asynchrony handler is passed to the , and the client does not poll
it. A    uses the   asynchrony handler and does not
obtain the result, but only an acknowledgment.

4.5 Queued Asynchrony Handlers

Sometimes we want to use one instance to handle multiple responses. A simple im-
plementation of such behavior is an asynchrony handler that queues the arriving re-
sponses. Such queuing handlers with FIFO (first-in,first-out) behavior are pre-defined
in our framework for ,  , and   (as depicted
in Figure 3).

In the queuing variant the client cannot use the handler object reference to identify
the invocation that belongs to the result. Thus generally theclientACT field should be
used to identify the invocation that belongs to an asynchrony handler. TheclientACT

field is also important for clients, if they need to customize the handler objects. For
instance, if a  should forward the callback to an operation of the client



AsyncHandler
«interface»

ResultCallback
«interface»

boolean resultArrived();
Object getResult();

PollObject
«interface»

int ackArrived()

SyncWithServer
«interface»

SingleSyncWithServer SingleResultCallback

QueuedResultCallback

void inform(Object clientData, Object result);

SinglePollObject

void doCallback()

ObjectQueue

QueuedPollObjectQueuedSyncWithServer

Figure 3. Handlers for Obtaining Asynchronous Results

:AsyncClientProxy

invoke()

client

new

execute()

:AsyncClientInvocationHandler

async: run()

:Call

constructCall()

new

invoke()

result

:PollObject

new

pollObject

pollObject

inform()

resultArrived()

false

resultArrived()

false

resultArrived()

true

getResult()

result

Figure 4. Poll Object Dynamics



object, a reference to the client object is needed. This reference can be passed as part of
a client ACT structure, which is then used by the custom asynchrony handler to dispatch
the callback to the client.

Consider a  as a second example. A developer might define a

 class as an extension of the existing  typeResultCallbackQueue :
class DateClientQueue extends ResultCallbackQueue {...};

Then the client can use this custom type to handle invocations. When we use a queue
handler type, we usually want to handle more than one result with the same handler;
thus we instantiate a number of invocations in different threads of control:
AsyncClientProxy clientProxy = new AsyncClientProxy();
DateClientQueue results = new DateClientQueue(10);
for (int i = 0; i < 10; i++) {

String id = "callback" + i;
clientProxy.invoke(results, id, endpointURL, operationName,

null, rt);
}

In this example the ten invocations are all reported to one queuing 

object. This object can either handle the result on its own (e.g. if the client is just a
main method) or forward the callback to the client object that has invoked it. Of course,
if the client is an object that implements theResultCallback interface it can also be
itself handed over as a  object.

4.6 Using WSDL Generated Client Stubs in An Asynchronous Client Proxy

WSDL [6] is used as a standard  [16] language in the context of
web services. The main goal of using WSDL is to provide a language to interchange
information about web services and transfer these to clients.

Axis provides two models of invocation and both can be used within our asyn-
chronous invocation framework:

– TheCall interface provided by Axis can be used to construct an invocation at run-
time. This interface is used by theconstructCall operation mentioned earlier.

– When using WSDL, Axis generates a stub class that already constructs the invoca-
tion using theCall interface. Thus, when this stub is provided by the client, the
  in our asynchronous invocation framework can directly use the stub
and does not need to invoke theconstructCall operation.

5 Performance Considerations

Providing an asynchronous invocation framework provides a better performance re-
garding the invocation times because the client can resume its work after dispatching
an invocation. Yet, compared to synchronous invocation dispatching, multi-threaded in-
vocations also incur an invocation overhead due to instantiating the threads. This over-
head can be minimized with thread pooling discussed in Section 5.1. Next, we compare
the performance of asynchronous invocations to synchronous invocations in our frame-
work.



5.1 Thread Pooling

To optimize resource allocation for threading, the threads can be shared in a pool using
the  pattern [12]. Clients can acquire the resources from the pool, and release
them back into the pool, when they are no longer needed. To increase efficiency, the
pool eagerly acquires a pre-defined number of resources after creation. If the demand
exceeds the available resources in the pool, it lazily acquires more resources.P

thus reduces the overhead of instantiating and destroying threads.

AsyncInvocationHandler
Runnable
«interface»

ThreadPool ThreadPoolWorker
idleWorkers

0..*1
workers

0..*1

ThreadinternalThread

1 1

«processes in internal thread»

Figure 5. Thread Pooling

We use a generic thread pool with thread pool workers that require the client to
provide [8] of the typeRunnable (see Figure 5). The thread pool acquires a
pre-defined number of thread pool workers in its idle workers list. Whenever a thread
pool worker is required, it is obtained from the pre-instantiated worker pool, if possible.
If there is no worker idle, the thread pool lazily instantiates more workers. After the
work is done, the (pre-defined) workers are put back into the pool.

The asynchronous invocation handlers implement theRunnable interface and can
thus be used with the thread pool. Thus each invocation handler runs in its own thread
of control and is automatically pooled.

5.2 Performance Comparison

As a performance comparison we have used a simple web service that just returns the
current date as a string.

For each variant we have tested 1, 3, 10, and 20 invocation in a row. The thread
pool had a size of 10 pre-initialized workers. All results are measured in milliseconds.
We have used the Sun JDK 1.4, Jakarta Tomcat 4.1.18, Xerces 2.3.0, and Axis 1.0. All
measurements were performed on an Intel P4, 2.53 GHz, 1 GB RAM running Red Hat
Linux. We have measured all performance tests 10 times and used the best results (the
average results were quite close to the best results and therefore we omit them here).

The results are summarized in Table 2.



For synchronous invocations we have simply measured the time that all invocations
took. We can see that the invocation times increase as the number of invocations in-
creases.

For    and    we have measured the time until the
requests were sent. We can see that the times are much shorter than the synchronous
invocations, as expected. Only the 20 invocations case is 2-3ms slower than it could be
expected when a linear progression would be assumed. This overhead is approximately
the time needed to instantiate 10 thread pool workers.

For   and  we have measured the times until the invoca-
tions are dispatched and the invoking thread can resume its work. These numbers are
more or less equal to the times of   and  . Also we have
measured the times until the last response has arrived. We can see that these numbers
are similar to the synchronous invocation times yet there is a slight overhead.

Performance TestSynchronous     

Invocation    

1 invocation 30ms 1ms 1ms 1ms/39ms 1ms/42ms
3 invocation 68ms 2ms 2ms 2ms/89ms 2ms/69ms
10 invocation 204ms 2ms 2ms 2ms/265ms2ms/189ms
20 invocation 378ms 5ms 4ms 5ms/409ms4ms/368ms

Table 2.Performance Comparison

6 Related Work: Other Known Uses of the Patterns

In this section we summarize some known uses of the asynchrony patterns as related
work.

There are various messaging protocols that are used to provide asynchrony for web
services on the protocol level, including JAXM, JMS, and Reliable HTTP (HTTPR)
[10]. In contrast to our approach these messaging protocols do not provide a protocol-
independent interface to client-side asynchrony and require developers to use the mes-
saging communication paradigm. Yet these protocol provide a reliable transfer of mes-
sages, something that our approach does not deal with. Messaging protocols can be
used in the lower layers of our framework.

The Web Services Invocation Framework (WSIF) [2] is a simple Java API for in-
voking Web services with different protocols and frameworks (similar to the internal
invocation API of Axis). It provides an abstraction to circumvent the differences in pro-
tocols used for communications, similar to our invocation framework. However, it deals
with asynchrony using messaging protocols (HTTPR, JMS, IBM MQSeries Messaging,
MS Messaging) only. The approach presented in this paper can also be used on top of
with WSIF.



For a long time CORBA [9] supported only synchronous communication and un-
reliable one-ways operations, which were not really an alternative due to the lack of
reliability and potential blocking behavior. Since the CORBA Messaging specification
appeared, CORBA supports reliable one-ways. With various policies the one-ways can
be made more reliable so that the patterns   as well as  ,
offering more reliability, are supported. The  and  patterns
are supported by the Asynchronous Method Invocations (AMI) with their callback and
polling model, also defined in the CORBA Messaging specification.

.NET [13] provides an API for asynchronous remote communication. Similar to
our approach, client asynchrony does not affect the server side. All the asynchrony
is handled by executing code in a separate thread on the client side.  are
supported by theIAsyncResult interface. One can either ask whether the result is
already available or block on the .   are also implemented
with this interface. An invocation has to provide a reference to a callback operation.
.NET uses one-way operations to implement  .    is not
provided out-of-box, but it can be implemented with a similar approach as used in this
paper.

Actiweb [14] is a web object system implemented in Tcl. It provides sink objects for
all kinds of blocking and non-blocking communication. A client can register a callback
for the sink (to implement ), block on the sink, or use the sink as a
 .    can be implemented by using sink with an empty

. Similarly,    can be implemented by a  that
raises an error if a timeout exceeds and does nothing if the server responds correctly.

7 Conclusion

In this paper we have provided a practical approach to provide asynchronous invoca-
tions for web services without using asynchronous messaging protocols. The frame-
work was designed with a set of patterns from a larger pattern language for distributed
object frameworks. The functionalities as well as the performance measurements in-
dicate that the goals of the framework (as introduced in Section 2) were reached; in
particular:

– A client can significantly faster resume with its work so that the performance
penalty of web services can be avoided to a certain degree.

– The invocation API provided by the framework is very simple and can flexibly be
extended with custom handlers.

– As the framework is built on top of Axis we automatically can use its heterogeneity
regarding transport protocols and back-ends of web services (so-called “service
providers”).

– If the client is a reactive server applications, a remote invocation does not block it.

As a drawback, an asynchrony framework on top of a synchronous invocation frame-
work always incurs some overhead in terms of the overall performance of the client



application. Further functionalities of messaging protocols, for instance, are not sup-
ported. But as messaging protocols can be used internally this is not a severe drawback.
Our framework does not introduce any security functionalities (yet) at the invocation
layer, and can thus only use security functionalities implemented at lower layers, say,
at the transport protocol layer.

References

1. C. Alexander.The Timeless Way of Building. Oxford Univ. Press, 1979.
2. Apache Software Foundation. Web services invocation framework (WSIF). http://

ws.apache.org/wsif/, 2002.
3. Apache Software Foundation. Apache axis. http://ws.apache.org/axis/, 2003.
4. D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,

and D. Winer. Simple object access protocol (SOAP) 1.1. http://www.w3.org/TR/SOAP/,
2000.

5. T. Bray, J. Paoli, and C. Sperberg-McQueen. Extensible markup language (XML) 1.0.
http://www.w3.org/TR/1998/REC-xml-19980210, 1998.

6. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description
language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

7. R. Fielding, J. Gettys, J. Mogul, H. Frysyk, L. Masinter, P. Leach, and T. Berners-Lee. Hy-
pertext transfer protocol – HTTP/1.1. RFC 2616, 1999.

8. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

9. O. M. Group. Common request broker architecture (corba). http://www.omg.org/corba,
2000.

10. IBM developerWorks. Httpr specification. http://www-106.ibm.com/developerworks/
webservices/library/ws-httprspec/, 2002.

11. R. E. Johnson and B. Foote. Designing reusable classes.Journal of Object-Oriented Pro-
gramming, 1(2):22–35, June/July 1988.

12. M. Kircher and P. Jain. Pooling pattern. InProceedings of EuroPlop 2002, Irsee, Germany,
July 2002.

13. Mircrosoft. .NET framework. http:///msdn.microsoft.com//netframework, 2003.
14. G. Neumann and U. Zdun. Distributed web application development with active web objects.

In Proceedings of The 2nd International Conference on Internet Computing (IC’2001), Las
Vegas, Nevada, USA, June 2001.

15. D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.Patterns for Concurrent and Dis-
tributed Objects. Pattern-Oriented Software Architecture. J. Wiley and Sons Ltd., 2000.

16. M. Voelter, M. Kircher, and U. Zdun. Object-oriented remoting: A pattern language. In
Proceeding of The First Nordic Conference on Pattern Languages of Programs (VikingPLoP
2002), Denmark, Sep 2002. http://wi.wu-wien.ac.at/∼uzdun/publications/vikingPlop02.pdf.

17. M. Voelter, M. Kircher, and U. Zdun. Patterns for asynchronous invocations in distributed
object frameworks. submitted, a draft can be found at http://wi.wu-wien.ac.at/∼uzdun/
publications/AsynchronyDraft.pdf, 2003.

18. D. Winer. XML-RPC specification. http://www.xmlrpc.com/spec, 1999.


