
Remoting Patterns -
A Systematic Approach for Design Reuse of

Distributed Object Middleware Solutions

Markus Völter Michael Kircher Uwe Zdun
voelter Siemems AG New Media Lab

Ingenieurbüro für Softewaretechnologie Corporate Technology Department of Information Systems
Germany Software and System Architectures Vienna University of Economics

voelter@acm.org Germany Austria
michael@kircher-schwanninger.de zdun@acm.org

In many situations the developers or architects of a distributed system
require a deep understanding of the middleware they use. We argue
that patterns and pattern languages are a practical and useful means to
convey this knowledge. Unfortunately, a comprehensive pattern
language, explaining how to effectively use, extend, integrate,
customize, or build distributed object middleware solutions was
missing. Therefore, we propose a pattern language of remoting
patterns as a systematic way to reuse software models, designs, and
implementations in the area of distributed object middleware. This
pattern language has rich dependencies to other patterns and pattern
languages from related domains, such as networking, concurrency,
resource management, server components, security, availability, scal-
ability, fault tolerance, and aspect-orientation.

Introduction
When developing, maintaining, or evolving a complex distributed system often the only source
of concrete design and implementation knowledge about the system are the experiences of the
developers and the source code itself. For many systems, only a few ‘gurus’ have a thorough
understanding of the system and the prevalent development practices used to build it. This,
however, means that the efforts necessary to acquire or evolve this knowledge are very high for
people who are not among the experts for the system. This problem becomes extremely pressing,
for instance, when the system experts leave the company.

Even though a large number of approaches exist that document how a system is designed, not
many approaches also explain why a system is designed in a certain way. As outlined by Schmidt
and Buschmann [SB03], patterns and middleware are popular techniques for coping with these
challenges. Patterns provide reusable design knowledge in form of proven solutions to recurring
software problems in a particular context or domain. Middleware allows to reuse a piece of soft-
ware that hides the details of low-level APIs, such as those of operating systems, network
protocol stacks, and databases. Today, distributed object middleware belongs to the basic
elements in the toolbox when developing distributed systems. Popular examples of distributed
object middleware systems are CORBA, Web Services, DCOM, Java RMI, and .NET Remoting.

Schmidt and Buschmann argue that patterns and middleware complement each other to enhance
the systematic reuse of successful software models, designs, and implementations that have
already been developed and tested [SB03]. This consideration does not only apply for systems
built on top of a middleware, but also for situations in which an understanding of the inner work-
ings of the middleware is required. Examples of such situations are:

• For using a distributed object middleware in an effective manner, developers need to under-
stand the concepts and inner workings of the middleware implementation well. Even
though different middleware systems use different remoting abstractions, terminologies,
implementation language concepts, and so forth, they share many concepts. Understanding
these common concepts also helps to switch from one middleware system to another.

• In some situations a middleware systems needs to be extended with additional functionality.
Consider, for instance, the middleware of choice does not support a security feature that is
required for a distributed application. Then the developers need to implement this feature as
an extension to the middleware system.

• Sometimes it is necessary to integrate different middleware systems. Just consider distrib-
uted applications that are developed independently in different departments of a company
or in different companies. If these applications need to work together, the middleware
systems used by the applications need to be integrated.

• More rarely developers need to customize a distributed object middleware, or even build it
from scratch. For instance, in the DRE (distributed, real-time, and embedded) domain
systems have tight constraints regarding memory consumption, performance, and real-time
communication. If no suitable middleware product exists or all available products turn out
to be inappropriate, the developers must customize one of the existing solutions, if possible,
or otherwise develop their own solution.

In such situations it is essential to understand the inner workings of proven approaches and tech-
nologies in the field of distributed object middleware. In this article, we propose a pattern
language as a systematic approach to provide knowledge about the middleware’s inner work-
ings, and how to use, extend, integrate, customize, or even build distributed object middleware.

Up until now, there has been no comprehensive pattern language that explains the inner work-
ings of distributed object middleware. Existing patterns have explained specific aspects of
middleware implementations - see for instance [SSRB00, Lea99, GT03] - or how to build higher-
level systems on top of a middleware, as for instance the server component patterns in [VSW02].
The book Remoting Patterns [VKZ04], of which we describe the key patterns in this article,
provides a glue between those other patterns and the middleware layer to leverage the system-
atic development of distributed system based on patterns.

This article is structured as follows: First we explain the specific kind of middleware we concen-
trate on - communication middleware in general and distributed object middleware in specific -
to position this article. Next, we briefly introduce patterns and pattern languages. Then we
explain the Remoting Patterns [VKZ04] - which are the main focus of this article. Finally, we
conclude with the relationships of the Remoting Patterns to other patterns and pattern languages.

Communication Middleware
Distributed systems can be built directly on top of low-level network protocols, for instance using
communication based on TCP/IP sockets [Ste98]. But this means that developers have to handle
all details of low-level network programming. As a result, such systems are usually not easy to
scale and are rather cumbersome and error prone to use by developers. Moreover, they are hard to
maintain and change, and do not provide transparency of the distributed communication.

As a solution, typically a Communication Middleware, or simply Middleware, is used as an addi-
tional software layer. The main task of the middleware is to hide the heterogeneity of the
underlying platforms and provide transparency of distributed communication for the devel-
opers. That is, a remote invocations should be made as similar as possible to local invocations.
However, full transparency is not possible: remote invocations always introduce new kinds of
errors, latency, and so forth.

Figure 1. Communication Middleware

The middleware layer is typically implemented on top of the network services, offered by the
operating system. The application layer hosting the client and server application is usually not
allowed to bypass the middleware layer in order to access low-level network services directly.
That means the middleware hides the heterogeneity of the underlying platforms from applica-
tion developers.

There are a number of different remoting styles used in today’s middleware systems, including
systems based on remote procedure calls (RPC), messages, shared repositories, or streams of data. In
this article we focus on middleware using object-oriented variants of the RPC style. However, all
of the mentioned remoting styles can be used to implement the others; thus most of the patterns
presented in this article are also relevant for systems implementing one of the other remoting
styles.

It is important to understand that there are many other remoting styles that are based on the basic
remoting styles. Examples of such higher-level remoting styles are code mobility, peer-to-peer
(P2P) systems, remote evaluation, GRID computing, publish/subscribe systems, transaction
processing, and many others. Note that these high-level remoting styles are often implemented
using the basic styles, or as variants of them. However, the users of these styles are not confronted
with their internal realization. For example, the user of a P2P system, which is based on RPC, does
neither have to deal with the internal RPC mechanisms, nor with the naming service used for ad
hoc lookup of peer services.

Patterns and Pattern Languages
Over the past couple of years, patterns have become accepted as a mainstream software develop-
ment technique. The most popular patterns are those for software design, for example the Gang-
of-Four book [GHJV95] and POSA2 [SSRB00] , and those on software architecture, for example
POSA1 [BMR+96]. In addition, the patterns community has documented patterns for analysis

Server
Application

Client
Application

Operating
System
Kernel

Network
Services

Middleware

Operating
System
Kernel

Network
Services

Client

Network

Server
Application

[Fow96], patterns for non-IT topics such as organizational or pedagogical patterns [PPP], and
many more.

For this article we want to use the following definition of patterns by Jim Coplien, on the Hillside
web-site [HS], which summarizes the longer definition by Christopher Alexander [AIS+77]:

Each pattern is a three-part rule, which expresses a relation between a certain context, a certain
system of forces which occurs repeatedly in that context, and a certain software configuration which
allows these forces to resolve themselves.

A single pattern describes one solution to a particular, recurring problem. However, ‘real big
problems’ usually cannot be described in one, single pattern. The pattern community has there-
fore come up with several ways to combine patterns to solve a more complex problem or a set of
related problems:

• Compound patterns are patterns that are assembled from other, smaller patterns.
• Families of patterns are collections of patterns that solve the same general problem.
• Collections or systems of patterns comprise several patterns from the same domain or problem

area.
• Pattern languages are the most powerful form of combining patterns . A pattern language has

a language-wide goal. The purpose of the language is to guide the user step by step to reach
this goal. The patterns in a pattern language are not necessarily useful in isolation. Pattern
languages do not only specify solutions to specific problems, but also describe a way to
create a ‘whole’, the overall goal of the pattern language.

The patterns described in this article form a pattern language in the domain of remoting. That is,
they explain how distributed object middleware systems work.

Remoting Patterns - Pattern Language Overview
In this section, we present the Remoting Patterns, as an comprehensive overview. Refer to
[VKZ04] for more details on the pattern language.

Broker Architecture of a Middleware and Basic Remoting Patterns
The pattern BROKER1 first described in POSA1 [BMR+96] is, from our perspective, a compound
pattern that is typically implemented using a number of patterns from the Remoting Pattern
language. The BROKER pattern addresses the problem that distributed software system devel-
opers face many challenges that do not arise in single-process software. One main challenge is
the unreliable communication across networks. Other challenges are the integration of heteroge-
neous components into coherent applications, as well as the efficient usage of networking
resources. If developers of distributed systems must master all these challenges within their
application code, they might loose their primary focus, to develop distributed applications that
solve the application problems well.

The BROKER pattern separates the communication functionality of a distributed system from its
application functionality by isolating all communication related concerns in a BROKER. A BROKER
hides and mediates all communication between the objects or components of a system. Local
BROKERS on client side and server side enable the exchange of requests and responses between the
client and the remote object. A BROKER consists of a client-side REQUESTOR to construct and
forward invocations, as well as a server-side INVOKER that is responsible for invoking the opera-
tions of the target remote object. A MARSHALLER on each side of the communications path handles

1. We highlight pattern names from the Remoting Patterns book [VKZ04] in SMALLCAPS font.

the transformation of requests and responses - from programming-language native data types
into a byte array that can be sent over the wire. Figure 2 shows this typical BROKER architecture.

Figure 2. Broker Architecture

In addition to the core patterns consisting of REQUESTOR, INVOKER, and MARSHALLER, the BROKER
typically relies on the following patterns:

• A CLIENT PROXY is a placeholder for the remote object in the client process, offering the same
interface as the remote object. A CLIENT PROXY lets remote operation invocations look like
local operation invocations from a client’s perspective. Internally, the CLIENT PROXY trans-
forms invocations of its operations into REQUESTOR invocations. The REQUESTOR is then
responsible for constructing the request and for forwarding it to the target remote object.

• An INTERFACE DESCRIPTION is used to make the remote object’s interface known to the clients.
Thus the INTERFACE DESCRIPTION can be used to construct a CLIENT PROXY for a particular
remote object type.

• The CLIENT REQUEST HANDLER and SERVER REQUEST HANDLER handle efficient sending,
receiving, and dispatching of requests. These two patterns act at the layer beneath the
REQUESTOR and the INVOKER. The request handlers forward and receive request and
response messages from and to the REQUESTOR and the INVOKER, respectively.

• A remote invocation introduce new kinds of errors, compared to local invocations, as for
instance, technical failures in the network communication infrastructure or problems within
the server infrastructure. REMOTING ERRORS are used to signal these new errors types to the
client side. The REQUESTOR and INVOKER are responsible for forwarding REMOTING ERRORS to
the client, if they cannot handle the REMOTING ERROR on their own.

The patterns mentioned so far detail the BROKER pattern. Figure 3 shows the typical dependencies
of the patterns, when they are used within a BROKER architecture.

Process A

Client

Requestor

M
ac

hi
ne

 B
ou

nd
ar

y

Process B

Invoker

Remote
Object

Marshaller

1) submit request

2) marshal request 3) forward

Marshaller

4) unmarshal

5) invoker operation

Figure 3. Basic Remoting Patterns - Dependencies

Identification Patterns
Clients of distributed applications need to find the correct remote object within the server appli-
cation. Thus, means for identification, addressing, and lookup of remote objects are required.

The identification of remote objects in a server application is usually done by assigning logical
OBJECT IDS for remote objects. These OBJECT IDS are embedded in remote invocations so that the
INVOKER can find the correct remote object. However, OBJECT IDS only identify the remote object
in the context of one particular server application. That is, in two different server applications two
different objects with the same OBJECT ID might exist. For a remote invocation we additionally
need to deliver the message to the correct server application. An ABSOLUTE OBJECT REFERENCE
extends the concept of OBJECT IDS with location information, such as the hostname, the port, and
the OBJECT ID of a remote object.

Often it is important that the location of remote objects does not need to be hard-wired into the
system. For instance, when remote objects are moved to other hosts, the system integrity of the
distributed application should not be compromised. The pattern LOOKUP allows server devel-
opers to register their remote objects at a central service e.g. by name or property. Clients can then
discover the remote objects using this service. The client must only know the ABSOLUTE OBJECT
REFERENCE of the lookup service instead of the potentially huge number of ABSOLUTE OBJECT
REFERENCES of the remote objects it wants to communicate with. The LOOKUP pattern simplifies
the management and configuration of distributed systems as clients can easily find remote
objects, while avoiding tight coupling between them.

The dependencies of the identification patterns are visualized in Figure 4.

INVOKER

di
sp

at
ch

es
in

vo
ca

tio
n

to

CLIENT PROXY
MARSHALLER

use
s f

or

marsh
alli

ng

reque
sts

uses for

de-marshalling

requests

INTERFACE DESCRIPTION

di
sp

at
ch

es
re

qu
es

ts
 to

de
sc

rib
es

int
erf

ac
e o

f describes

interface of

CLIENT REQUEST
HANDLER

uses to

send

request

SERVER REQUEST
HANDLER

communicates
with

REQUESTOR

uses to build

up request

REMOTING
ERROR

raises

raisesraises

rai
se

s

Remote Object

Figure 4. Identification Patterns - Dependencies

Lifecycle Management Patterns
Different remote objects require different lifecycles. Some remote objects need to exist from
server application startup to termination. Other remote objects need to be available only for a
limited period of time. In addition to difference in the lifecycles, a number of additional tasks
might be coupled with the activation and deactivation of remote objects. An important aspect is
that the activation and deactivation of remote objects have a strong influence on the overall
resource consumption of the distributed application.

The following lifecycle management patterns describe some of the most common lifecycle
management strategies used in today’s distributed object middleware. The patterns are used to
specify the details of activation and deactivation of remote objects.

There are three basic lifecycle management patterns:

• STATIC INSTANCES typically have a lifetime identical to the lifetime of their server application.
They are used to represent fixed functionality in the system.

• PER-REQUEST INSTANCES are created for each new request and destroyed after the request.
They are used for highly concurrent environments, where resource consumption of each
running instance is an issue.

• CLIENT-DEPENDENT INSTANCES rely on the client to explicitly instantiate them. They are used
to represent client state in the server.

The lifecycle management patterns internally make use of a set of specific resource management
patterns [KJ04], which are:

• LEASING is used to deactivate a remote object after a pre-defined period of time automati-
cally, if the client does not renew the lease before that period of time expires. For example,
LEASING is used to properly release CLIENT-DEPENDENT INSTANCES when they are no longer
needed.

• LAZY ACQUISITION is used for on-demand-activation of remote objects.
• POOLING manages remote object instances in a pool to optimize reuse of remote object

instances. The pattern is especially useful when activation and deactivation incur a signifi-
cant overhead. This is often the case for short living instances, such as PER-REQUEST
INSTANCES.

Another important issue is how to handle situations in which the total number of remote objects
exceeds the resources (especially the memory) of the server. One solution to this problem is
described by the pattern PASSIVATION: temporarily unused instances are removed from memory

Remote Object

ABSOLUTE OBJECT
REFERENCE

maps properties to

OBJECT ID

identifies

is part of

uniquely id
entifie

s

REQUESTOR

us
es

LOOKUP

Client

lo
ok

s
up

ob
je

ct
s

in

SERVER
APPLICATION

re
gi

st
er

s
ob

je
ct

s
in

INVOKER

co
ns

tru
ct

s

 a
ssigns uses

and stored in a persistent storage such as a database. Upon the next request, the instances are
restored again.

The lifecycle management patterns and their relationships are shown in Figure 4.

Figure 5. Lifecycle Management Patterns - Dependencies

Extension Patterns
Often, when developing distributed applications, developers need to deal with extension
concerns in the context of remote invocations at various layers of the distributed object middle-
ware. Such extension concerns are, for instance, support for security, support for transactions, or
the exchange of communication protocols. To handle such extension concerns, remote invoca-
tions need to contain more information than just the operation name and its parameters: for
instance, for transaction support a transaction ID needs to be transported between client and
server. For that purpose INVOCATION CONTEXTS are used: they are added to the remote invocation
on client side and read out on server side.

When the invocation process needs to be extended with behavior, INVOCATION INTERCEPTORS can
be used. Just consider adding security credentials to a remote invocation. In this example, we
require additional behavior for adding the credentials to the invocation on client side and
checking them on server side before access to the remote object is granted. INVOCATION INTER-
CEPTORS can intercept remote invocations after they are invoked by the client on the client side
and before they are invoked on the remote object on the server side. They are typically applied in
an interceptor chain that is triggered by the REQUESTOR or CLIENT REQUEST HANDLER on the client
side, and by SERVER REQUEST HANDLER or INVOKER on the server side. For passing information
between clients and servers, INVOCATION INTERCEPTORS use the INVOCATION CONTEXT. INVOCA-
TION INTERCEPTORS are also used to add information transparently to the INVOCATION CONTEXT
(such as the security credentials in the example above).

In many distributed applications more than one communication protocol needs to be supported.
For instance, an encrypted protocol might be needed in addition to an un-encrypted protocol e.g.
to send sensitive data. Simple CLIENT and SERVER REQUEST HANDLER support only a fixed commu-
nication protocol. PROTOCOL PLUG-INS extend the CLIENT and SERVER REQUEST HANDLER with
support for multiple, exchangeable communication protocols.

STATIC INSTANCE PER-REQUEST INSTANCE
CLIENT-DEPENDENT

INSTANCE

LAZY ACQUISITION

op
tim

i z
es

im
plies

POOLING

op
tim

iz
es

LEASING

requiresop
tim

ize
s

Client

instantiates

instantiates

SERVER APPLICATION

instantiates

LIFECYCLE MANAGER

PASSIVATION
may usemay use

The relationships of the extension patterns are illustrated in Figure 6.

Figure 6. Extension Patterns - Dependencies

Extended Infrastructure Patterns
The following extended infrastructure patterns deal with specific implementation aspects of the
server-side BROKER architecture.

The LIFECYCLE MANAGER is responsible for managing activation and deactivation of remote
objects - by implementing the lifecycle management patterns, explained above. It is typically
implemented as a part of the INVOKER.

In many situations it is inefficient to configure each remote object separately, e.g. with lifecycle
strategies, interceptors, or communication protocols. CONFIGURATION GROUPS are used to
configure groups of remote objects with these aspects.

In some distributed applications specific quality of service constraints of the system need to be
ensured. To implement such measures, it is necessary to monitor the performance of various
parts of the system, such as the INVOKER, the CLIENT and SERVER REQUEST HANDLER, or even the
remote objects themselves. This is done using an QOS OBSERVER.

LOCAL OBJECTS are infrastructure objects of the distributed object middleware, such as the
REQUESTOR, the LIFECYCLE MANAGER, or the QOS OBSERVERS, that follow the same programming
conventions as remote objects, but are inaccessible from remote sites. They ease programming as
the same programming conventions can be applied for remote objects and local instances.

LOCATION FORWARDERS can forward invocations between different server applications. They are
used to implement load balancing, fault tolerance, and transparency of remote object relocation.

Figure 7 shows the extended infrastructure patterns and their relationships.

INVOCATION
INTERCEPTOR

transports

creates/
uses

tra
ns

po
rts

communicates w ith

INVOCATION CONTEXT

Client

SERVER REQUEST
HANDLER

CLIENT REQUEST
HANDLER

INVOKERREQUESTOR

pluged into

provides
hooks for

PROTOCOL
PLUG-IN

pluged into

uses

uses
uses

uses

provides

hooks fo
r

uses

uses

Remote Object
CLIENT
PROXY

Figure 7. Extended Infrastructure Patterns - Dependencies

Invocation Asynchrony Patterns
Four alternatives for asynchronous invocations can be used to extend ordinary synchronous
invocations:

• FIRE AND FORGET describes best-effort delivery semantics for asynchronous operations. It
does not convey results nor acknowledgements.

• SYNC WITH SERVER sends an acknowledgement back to the client once the operation has
arrived on the server-side, but does not convey results.

• POLL OBJECTS receive a result of an asynchronous invocation. They allow clients to query
(“poll”) the distributed object middleware for the result of an asynchronous invocation.

• RESULT CALLBACKS also receive a result, but do not wait for the client to poll for the result.
Instead they actively notify the requesting client of a asynchronously arriving results.

Figure 8 illustrates the asynchronous invocation patterns and their dependencies.

Figure 8. Invocation Asynchrony Patterns - Dependencies

Integration with other Pattern Languages
An important aspect of pattern languages is that they are domain-specific with a language-wide
goal. As more and more pattern languages emerge and mature, pattern languages can be used as

Remote Object

grou
ps

 an
d

org
an

ize
s s

ets
 o

f

LIFECYCLE MANAGER

m
an

ag
es

life
cy

cl
e

fo
r

monitors

CONFIGURATION
GROUP

LOCAL OBJECT

QOS OBSERVER

op
tim

iz
es

re
so

ur
ce

co
ns

um
pt

io
n

m
on

ito
rs

REQUEST HANDLER
INVOKER

mon
ito

rs

appears like
im

plem
ented as

Server Application

LOCATION
FORWARDER

provides location

transparency for

ABSOLUTE OBJECT
REFERENCE

up
da

te
s

cl
ie

nt
's

FIRE AND FORGET SYNC WITH SERVER
extends reliably

POLL OBJECT RESULT CALLBACK

extends with result

alternatives

extends w
ith

result

a systematic way to integrate solutions from related but independent domains - by describing the
links to other pattern languages and patterns, documented elsewhere. In the following we
explain the most important links of the Remoting Patterns to closely related pattern languages:

• Distributed object middleware follows two architectural patterns documented in POSA1
[BMR+96]: The Broker pattern, in terms of mediating object invocations between communi-
cation participants, and the Layers pattern, regarding the separation of responsibilities such
as connection handling, marshalling, decomposition, and dispatching of invocations.

• POSA2 [SSRB00] contains many patterns that are used to implement distributed systems -
especially at the communication protocol layer of a distributed object middleware. These
patterns are mainly used as the constituents of the request handlers and PROTOCOL PLUG-INS.
Among them are Reactor, Half-sync/Half-async, Leader/Followers, Monitor Object, and Active
Object.

• Doug Lea’s book Concurrent Programming in Java - Design Principles and Patterns [Lea99]
describes some concurrency patterns with a special focus on Java.

• The patterns in the paper A System of Patterns for Concurrent Request Processing Servers [GT03]
documents several patterns for concurrent request handling in high-performance servers.

• POSA3 [KJ04] deals with patterns for resource management and optimization. It documents
a pattern language on how to efficiently and effectively acquire, access, and release
resources at different layers of abstraction. That is, the book looks at the management of any
kind of resource, ranging from typical operating system resources such as threads or connec-
tions, up to remote objects or application services.

• Sessions deal with a common problem in the context of distributed object middleware:
Client-dependent state must be maintained in the distributed object middleware between
individual accesses of the same client. While sessions can exist at any protocol level, they are
mostly independent of lower level communication tasks, for example when multiple client
objects share the same physical network connection. The Session pattern [Sor02] provides a
solution to this problem: State is maintained in sessions, which are maintained between indi-
vidual client requests, so that new requests can access previously accumulated data. A
session identifier lets clients and remote objects be able to refer to a session.

• Server-side component infrastructures [VSW02] provide a distributed execution environ-
ment for software components. The execution environment is called a component container,
or Container, for short. Components cannot be executed standalone, they require the container
to provide essential services to them. These services handle the technical concerns of an
application. Technical concerns are typically cross-cutting aspects that are not directly
related to the application functionality implemented within the components. What exactly
constitutes these technical concerns depends on the application domain. In an enterprise
environment (where EJB, CCM, or COM+ are typically used), the technical concerns are
issues such as transaction management, resource access decision, fail-over, replication, and
persistence. For remote access to the Components distributed object middleware is typically
used.

• When a distributed object middleware is deployed on only one machine, availability and
scalability are problematic. When this machine would go down, the whole system would
fail. Under increased load conditions, the system might not be able to provide the same or
similar levels of performance. To deal with such situations, Dyson and Longshaw introduce
patterns for building highly available and scalable distributed systems, especially Internet
systems [DL03].

• Fault tolerance techniques are applied to detect errors of a system and recover from errors or
mask errors of a system. Saridakis presents basic fault tolerance techniques, including fault
detection, recovery, and masking, as a system of patterns [Sar02]. These patterns have two
relations to distributed object middleware. First, many fault tolerant systems use replication

on different hardware units, and these distributed units require remote communication.
Second, some safety-critical distributed systems require fault tolerance of the implementa-
tion of remote objects.

• Security is another important orthogonal concern to be considered when building distrib-
uted systems. In [VSK04] a few best practices are discussed when combining the Remoting
Patterns with security concerns.

• Aspect-oriented programming (AOP) [KLM+97] avoids tangled solutions for cross-cutting
design concerns. AOP is an important future trend in the domain of object-oriented
remoting. AOP can be implemented in different ways. Actually, the term AOP denotes a
number of different adaptation techniques, and there are a number of different aspect
composition frameworks and languages. In [Zdu03] a pattern language is described that
explains how these aspect composition frameworks are realized internally. In [Zdu04] a
projection of this pattern language to a number of popular aspect composition frameworks
can be found. The patterns in this pattern language can also be used to implement aspect
solutions for distributed object middleware.

Figure 9 summarizes the relationships of the Remoting Patterns to other patterns and pattern
languages by showing the main problem - in form of a question - that leads to considering the
other patterns or pattern languages.

Remoting
Patterns

POSA 2:
Patterns for
Networked

Objects

Concurrent
Programming

in Java -
Design

Principles and
Patterns

A System of
Patterns for
Concurrent

Request
Processing

Servers

POSA 3:
Resource

Mangement
PatternsSessions

Patterns

Security
Patterns

Fault
Tolerance
Patterns

Availability/
Scalability
Patterns

Patterns
for Aspect-

Oriented
Programming

POSA 1:
Broker and

Layers

Server-
Component

Patterns

How to implement
distributed components as
an extension of a distributed
object middleware?

How to modularize orthogonal
concerns in remote invocations,
such as transactions, logging, or
security concerns?

How to efficiently and effectively
handle resources, such as threads
or memory, in a middleware?

How to
deal with
security
concerns?

How to detect
faults or
recover from
faults in
remote
invocations?

How to
improve
the availabilty
and/or
scalability of a
distributed
system?

How to
maintain
client-
dependent
state in a
distributed
system?

How to structure the
overall architecture of
the distributed
middleware?

How to implement networking and concurrency
e.g. within the communication protocol layer?

Figure 9. Remoting Patterns and other Patterns/Pattern Languages: Overview

In summary, most of the closely related domains of Remoting Patterns are well captured by other
patterns and pattern languages. Thus the Remoting Patterns act as a glue between these patterns
and pattern languages, when applied to distributed object middleware or distributed application
development.

There are many patterns for extensions of the core concepts of distributed object middleware,
such as fault tolerance, scalability, and session management existing. However, some domains
such as security or transactions in distributed systems are not as well captured by patterns yet (a
security patterns book is forthcoming but not available yet). Also, pattern languages for systems
built on top of distributed object middleware are missing in many domains. For instance, there
are only a few patterns for P2P systems or GRID computing available yet. The mentioned AOP
patterns are only explaining how AOP can be realized, but not how to build distributed AOP
applications. This is not astonishing, however: Fields like P2P, GRID, or AOP are still emerging,
so it is no wonder that mature patterns are missing for these fields because patterns describe
established knowledge. We expect patterns for these fields to appear, when the fields have
become more mature.

Conclusion
In this article we have presented an overview of a comprehensive pattern language for distrib-
uted object middleware, as well as its connections to other pattern material. The goal of this
pattern language is to systematically use, extend, integrate, customize, or even build distributed
object middleware - in other words: to document the existing design knowledge in this domain.
Also, this pattern language serves as a glue for other pattern material relevant for distributed
object middleware systems and distributed applications. This article only gives a brief overview
of the Remoting Patterns language. Refer to [VKZ04] for a much more detailed view, including
full pattern descriptions and technology projections of the patterns to a number of middleware
implementations: .NET Remoting, Web Services, and CORBA/Real-time CORBA.

References
AIS+77 C. Alexander, S. Ishikawa, M. Silverstein, M. Jakobson, I. Fiksdahl-King, and S.

Angel. A Pattern Language – Towns, Buildings, Construction. Oxford Univ. Press,
1977.

BMR+96 F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal. Pattern-Oriented
Software Architecture, Volume 1: - A System of Patterns. John Wiley and Sons,
1996.

DL03 P. Dyson and A. Longshaw. Patterns for High-Availability Internet Systems. In
Proceedings of EuroPlop 2003, Irsee, Germany, June 2003.

Fow96 Martin Fowler, Analysis Patterns: Reusable Object Models, Addison-Wesley, 1997.

GHJV95 E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns. Addison-Wesley
1994.

GT03 B. Gröne, P. Tabeling. A System of Patterns for Concurrent Request Processing
Servers. Proceedings of VikingPLoP, 2003.

HS James O. Coplien, A Pattern Definition, http://hillside.net/patterns/
definition.html

KLM+97 G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J. M. Loingtier, and
J. Irwin. Aspect-oriented programming. In Proceedings of ECOOP97, Finnland,
June 1997. LCNS 1241, Springer-Verlag.

KJ04 M. Kircher, P. Jain, Pattern-Oriented Software Architecture, Volume 3: - Patterns
for Resource Mangement, Wiley & Sons 2004

Lea99 D. Lea. Concurrent Programming in Java - Design Principles and Patterns.
Addison-Wesley, Reading, Mass., 1996.

PPP The Pedagogical Patterns Project, http://www.pedagogicalpatterns.org

Sar02 T. Saridakis. A System of Patterns for Fault Tolerance. In Proceedings of EuroPlop
2002, Irsee, Germany, July 2002.

Sor02 K. E. Sorensen. Sessions. In Proceedings of EuroPlop 2002, Irsee, Germany, July
2002.

SSRB00 D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software
Architecture, Volume 2: Patterns for Concurrent and Distributed Objects. John
Wiley and Sons, 2000.

SB03 D. C. Schmidt and F. Buschmann. Patterns, Frameworks, and Middleware: Their
Synergistic Relationships, Proceedings of the IEEE/ACM International Conference
on Software Engineering, Portland, Oregon, May 3-10, 2003.

Ste98 R. Stevens. UNIX Network Programming. Prentice Hall. 1998.

VSW02 M. Voelter, A. Schmid, and E. Wolff. Server Component Patterns. John Wiley and
Sons, 2002.

VKZ04 M. Voelter, M. Kircher, and U. Zdun. Remoting Patterns - Foundations of Enter-
prise, Internet, and Realtime Distributed Object Middleware. John Wiley and Sons,
2004.

Zdu03 U. Zdun. Patterns of tracing software structures and dependencies. In Proceedings
of EuroPlop 2003, Irsee, Germany, June 2003.

Zdu04 U. Zdun. Pattern language for the design of aspect languages and aspect composi-
tion frameworks. IEE Proceedings Software, 151(2): 67-83, April 2004.

