
The XP of TAO
eXtreme Programming of Large, Open-source Frameworks

 Michael Kircher David L. Levine
 Siemens AG Dept. of Computer Science.
 Corporate Technology, CT SE 2 Washington University
 Otto-Hahn-Ring 6 1 Brookings Drive
 81739 Munich, Germany St. Louis, MO 63130 USA
 +49 89 636 33789 +1 314 935 7538
 Michael.Kircher@mchp.siemens.de levine@cs.wustl.edu

ABSTRACT
The Adaptive Communication Environment (ACE) and
The ACE ORB (TAO) are cutting edge, real-time software
products that by nature support and grow from change.
Therefore, eXtreme Programming (XP) would seem to be
appropriate for these projects. In fact, their developers have
been following many XP practices all along. We describe
these practices here, and identify some that we do not
follow rigorously.

However, three characteristics of ACE and TAO
contraindicate the application of XP. These products are 1)
large, 2) open-source, and 3) development frameworks, that
is, not end-user applications. We explore the impediments
to XP for such projects and how we have, or would like to,
overcome them. In particular, we introduce remote pair
programming as a potential augmentation to traditional pair
programming.

Keywords
eXtreme Programming; Patterns and Frameworks;
Distributed and Real-Time Middleware

1 INTRODUCTION
Many successful large-scale software projects rely on the
open-source model [1]. The long lifetime and widespread
usage of open-source products leads to incremental feature
introduction, rapid development cycles, and, above all,
change. The most notable feature of open-source is a
potentially large and fluid development team.

eXtreme Programming (XP) is a natural development
approach for open-source in many respects, because it
encourages change and supports rapid evolution. However,
the large, distributed, and variously committed open-source
development team does not effectively support pair
programming. In practice, we have found that XP can be
successfully applied to a long-term open-source
development project.

This paper contributes threefold. First, it documents the
development process used in the ACE [2] and TAO [3]
projects. In particular, it considers the interaction of XP and

open-source. Second, we attempt to motivate other large,
open-source, and/or framework development projects to
consider XP. We include some suggestions for
development process components. Finally, it discusses the
current deficiency we see with XP applied to distributed
development: that remote pair programming is necessary
for large and/or open-source development projects. Section
2 documents our development process, and compares and
contrasts it with XP. Section 3 discusses how XP can be
successfully applied, in particular, to large and/or open-
source projects. Section 4 introduces remote pair
programming, and Section 5 concludes with what we have
found to be the keys to successful application of XP.

2 DOC AND XP
The Center for Distributed Object Computing (DOC, or
DOC group) at Washington University has long practiced
XP. We have employed many XP practices before they
were identified as such. We discuss how in this section.
Our purpose here is not to justify whether or not the DOC
group practices XP. Rather, it is to show that our project is
different in significant ways from the textbook XP
organization. In particular, our development team is large
and distributed, because our products are open-source.
Furthermore, our products are frameworks, and therefore
not always simple and minimal. Finally, one of our leading
products is standard-based, and therefore constrained in its
interface.

How is DOC eXtreme?
The following is a checklist [4] stated by the “The Three
Extremos” in the Portland Pattern Repository [5]. We
compare our research group against it briefly to
demonstrate our adaptation of XP.

• Paradigm: Your project is extreme to the degree you
see change as the norm, not the exception, and
optimize for change. Open-source framework
development is in constant change, the DOC group
would not have succeeded with poor support for
change. There are many examples in later sections
describing this, e.g. how changes in the standard API

 2

specification trigger change in our products.

• Values: Your project is extreme to the degree that you
honor the four values - communication, simplicity,
feedback, and courage - in your actions. We describe
our conformance to this in the discussion of the four
values of XP below.

• Power sharing: Your project is extreme to the degree
that Business makes business decisions and
Development makes technical decision. Business
decisions are made by the director of the group and his
research staff; development decisions are made by the
domain experts of the core development team. On
open-source projects, both the constituency of these
domain experts and the development team itself can
change often. That is one of the strength of open-
source, by bringing many viewpoints into the
development. It is also one of the challenges, because
there need to be some constraints on the development
process. We address that challenge by retaining source
code control in the core development team and a few
other select individuals.

• Distributed responsibility and authority: Your project
is extreme to the degree that people get to make the
commitments for which they will be held accountable.
Masters and PhD thesis work supports this idea. The
students get to make their commitments and are
responsible for achieving them. Because their thesis
work is very often tightly integrated with other work in
the team, everybody in the team has an interest in their
success. This ensures that everybody is motivated to
support them if needed; they do not have to struggle if
problems occur. People external to the core team
helping with work on the open-source project are
responsible for their work, yet they cannot be held
accountable in the traditional way. The system works
slightly differently; the motivation to build proper
software or to support the product when bugs occur
stems from the public contributors list. Nobody wants
his/her name associated with something that does not
work or is of obvious bad quality. Considering all this,
it can be stated that our way conforms to the eXtreme
way.

• Optimizing process: Your project is extreme to the
degree that you are aware of your software
development process, you are aware of when it is
working and when it isn't, you are experimenting to fix
the parts that aren't working, and you consciously
enculturate new team members. In our group we have
a continuous process of improvement, some of our
techniques on process monitoring and insourcing are
described in sections below.

The Four Values
Kent Beck states four values that let you decide if you are
doing XP right. We restate them here briefly and describe

how we apply them to our development.

The four values of XP are 1) communication, 2) simplicity,
3) feedback, and 4) courage. The DOC group supports the
four primary values of XP to various degrees.

Communication is very well supported both internally and
externally. Within the group, email and impromptu
conversations are the primary modes of communication.
There are no scheduled meetings, due to the conflicting
schedules of group members and success of the informal
mechanisms.

Externally, email lists are used to communicate
bidirectionally with users and contributors. There are
currently four email lists, ace-users, tao-users,
ace-bugs, and tao-bugs, and two lists that report
changes in ACE and TAO bug report status. The email lists
are gatewayed to a newsgroup, comp.soft-sys.ace,
for convenient access.

The email lists work very well because they support
asynchronous communication, they are persistent, and they
are searchable. Asynchronous communication is especially
important given the wide geographic distribution of
contributors, e.g. across time zones. Persistence supports
the informal use of the lists as a resource for design and
implementation issue discussions. Several commercial sites
store the list traffic in searchable form, which helps both
new and old users and contributors find discussions of
interest.

Simplicity has interesting implications for frameworks. The
goal of a framework is to simplify application
development. However, the framework itself is typically
not simple or minimal. Because the cost of framework
development effort is amortized over many projects, this
tradeoff of simplicity for functionality and complexity is
often acceptable. We discuss the issue of simplicity for
frameworks further in Section 3.

The huge (> 600) user community tests ACE+TAO quality
and conformance to standards, e.g. CORBA, on a very
short-term basis. New beta kits are created roughly every
other week. This keeps the feedback loop very tight. Bugs
and non-conformances are reported quickly through the
above mentioned communication media.

This feedback has the desired direct benefit to the code
base. It has a further benefit in open-source projects: it
links users into the development process. Many
contributors to open-source projects started as users. Then,
they fed back defect reports or enhancement requests.
Close contact with, and rapid feed back from, developers
encourages users to contribute fixes and enhancements.

The DOC group shows courage when developing the ACE
and TAO frameworks. Due to the changes coming from
customers, performance requirements or standards
requirements, e.g. changes in the CORBA spec, main parts

 3

of the ORB architecture have seen huge changes. The core
development team did not fear applying these huge
changes.

Examples of where the team showed courage are:

• Reimplementing the TAO Real-time Event Service

• Restructuring the ORB Core [6]

• Adding support for pluggable protocols [7]

• Large refactorings on the code generation for implied
IDL [8]

A good development process supports courage; you can
always easily step back from something that proved to not
work. Furthermore, a good development process is well
defined and documented yet adaptable. We discuss
development process aspects in the following section.

3 XP FOR LARGE, OPEN-SOURCE PROJECTS
Applying XP to Open-Source
Open-source development efforts differ from traditional
efforts because the distinction between Business and
Development is blurred. Business may expect ambitious
product features and development schedule, while
Development has constraints on resources and/or
technology. The group that coordinates development often
assumes both roles, especially early in the life of the
product. The natural tension between these two roles may
not be present. Therefore, formalities such as schedules
may not be taken seriously, or used at all. And, the
Planning Game is often one sided, because Development is
not directly bound by a design contract.

XP relies on a tight feedback cycle, open-source
development as well, though it can be hard to identify
users. Lack of user identification breaks the feedback cycle.
An effective remedy is to actively encourage and reward
feedback, for example, by public acknowledgment in
newsgroups and THANKS files.

Open-source projects rely on the contributions of (many)
developers. Successful, large, open-source projects require
many developers at various levels of effort. Over time, as
more and more people contribute, the core Development
group migrates more towards a traditional Business role. It
serves as a gatekeeper for the source base, identifies
desirable new features, assigns priorities, and schedules.
One or more of these activities can be performed by third-
party organizations, possibly for profit.

Applying XP to Framework Development
XP prescribes simple designs. In particular, software
should have the fewest possible classes and methods.
Frameworks must support multiple applications, and
therefore may not be minimal with respect to any one.
While frameworks may (greatly) simplify application code,
frameworks themselves can be very complex, and not
minimal, internally. Therefore, development of frameworks

themselves is atypical for XP.

Nonetheless, XP can be used to great benefit when building
frameworks. While XP tries to avoid costs for not yet
needed functionality, the cost and effort of developing and
maintaining good frameworks can be quite large, and must
usually be amortized over many application products.

To place framework development in proper perspective, its
immediate purpose must be considered. If a framework is
being developed for internal use, then simplicity dictates
that it only provides the necessary functionality for the
immediate target application(s). If additional or modified
functionality is required later, then the framework can be
refactored. If a framework is being developed for external
use, then it is an end-user product in its own right. The
business demands on the product must drive its evolution,
whether the product is a standalone application, framework,
operating system, or any other software artifact.

How do Standard APIs Relate to XP?
In this section we discuss how XP can be applied to build
software conforming to standard APIs.

The requirement to conform to a standard API, such as
CORBA or POSIX, has a two-fold impact on the
developers. On the one hand developers can profit, because
they do not have to go through the tough job of domain
analysis necessary to come up with the API. On the other
hand it can also limit the freedom in implementing the
semantics of standard APIs.

As a result, developers can focus largely on internal
design/implementation issues, rather than doing time
consuming and “mushy” upstream activities, such as trying
to figure out what the customer requirements are. In such
situations, XP and open-source are based on the notion of
rapid feedback loops and community development, which
are really powerful!

Besides the impact on the effectiveness of the developers,
standard APIs also have an impact on the metaphor
understood in the team. Standard APIs limit the scope the
metaphor can come from. There is less of a need to
translate domain concepts into software abstractions, such
as metaphors; the domain is software abstractions.

XP and Design Patterns
Due to the restriction on where metaphors can come from,
a replacement needed to be searched for. Ideas, concepts,
solutions need to get transported in some kind between
minds. As every member in our team is very familiar with
design patterns, we use them to communicate our ideas.
Design patterns are used to describe the internal
mechanisms, the under-the-hood of the outside standard
API. They are the common language based on a concise
and documented vocabulary.

Pattern languages can be an excellent replacement for
metaphors. They communicate a global view, as the

 4

metaphors are intended to do.

Some of the design patterns used in the architecture of
TAO are: The Reactor pattern [9], used for event
dispatching mechanism; the Acceptor and Connector
pattern [10], for abstraction of connection management;
and the Service Configurator pattern [11] for easy and
dynamic reconfiguration. At a higher abstraction level, the
Broker design pattern [12] describes the general interaction
between clients and servers with their proxies and stubs in
between.

Applying XP in a University Research Group
University research groups usually consist of one or more
professors, affiliated staff, PhD students, Masters students,
students volunteering on research, and visiting researchers.
There is no reason to expect that XP cannot be employed in
such environments.

However, our experience with XP has revealed some
interesting insight, which we discuss below.

Because Masters or PhD programs take between 2 to 6
years, there is a constant fluctuation of people associated
with it. New students need to get insourced all the time.
Besides this, there are also shorter cycles, like exchange
students, or visitors, staying anywhere between 2 and 12
months. Intensive mentoring and support from the whole
team help to insource new students within a very short
time. Every member of the team is always open to
questions. Ideas get transported via a common language:
design patterns. The first activity of a new member is to
study the various design patterns relevant to his/her work.
Good source code documentation, external documentation,
and research papers about former research projects are
necessary to get new members quickly up to speed.

So far we have described the insourcing process within the
core development team. In the remainder of this subsection,
we describe the insourcing process of the developers
external to the core team. People external to the core
development team are usually either employees of
companies, or research staff and students of other
universities, working with the open-source products. Most
of them start out as simple users, but soon report the first
bug, or enhancement request. After a while they usually dig
deeper and deeper, and get more and more involved. Soon
they contribute their first pieces to the open-source product.

A requirement for the success of such distributed
development teams is that everybody follows the basic
principles of the XP, which are:

• Rapid feedback : To drive rapid evolution of the
system.

• Assume simplicity: To best allocate programmer
resources given the economics of software as options.

• Incremental change: For overall development
efficiency (and sanity).

• Embracing change: To preserve options while
delivering what is most needed.

• Quality work : To leverage the natural tendency to take
pride in the efforts of an individual, and of the team.

Beside these, we found some additional principles very
useful when communicating with each other:

• Respect each other: We found it essential to respect the
opinions of others when discussing problems,
solutions, designs, etc. If people would not show
respect for each other, some would turn away in
distress.

• Honor the work of others: When somebody achieved
an important milestone, finished a tough job, or just
did refactoring to support the next steps in
development, others honor the work by letting them
know what a good job he/she did. Such behavior can
be a fundamental engine driving people to do a good
job the next time as well.

We have seen pair programming in our research group
before it was actually made that popular by XP. Students
discovered pair programming as a fun way to do their
research.1

They want to have as much fun as possible while working,
just as they want to create quality work. Solving problems
as team of two, while have some popcorn sessions and cans
of diet CokeTM is just more fun than solving them alone.
Within a short time, students realized that they were faster.
Not only that, but they also had less errors in their code and
learned from each other. Having snacks during these
sessions relaxes, and helps developers sustain their
enthusiasm for each programming session.

The working environment, the DOC research lab, supports
pair programming in an ideal way. At the beginning, this
was more of a coincidence, than planned beforehand. The
room is large enough to accommodate around 10 people,
and everyone has a reasonably fast machine on his/her
desk. Fast compilation machines are centrally available, via
remote access. Remote access to compilation machines is
very common to our team, due to the many platforms the
products have to support. Developers are responsible for
unit testing their code on various platforms. Usually these
are two or three different platforms, it is well known which
compilers are the most restrictive and/or non-conforming to
the programming language (C++, usually) standard.

The Planning Game
The goal of XP planning is to establish a mutually
respectful relationship between the customer and the
development team. It abstracts two participants, Business

1 We have collected some examples in
http://cs.wustl.edu/~doc/ACE_wrappers/etc/DOC-way.html

 5

and Development. Applied to the domain of software
developed at a university, Business is sponsors who fund
the work; Development is clearly the research group itself.
Because it is clear that the research group has great interest
in getting funding not only for the current projects, but also
for future projects, the same kind of interests are prevailing
as in every usual software development process. The
planning game can be applied the same way to research
groups.

Our story cards are stored as Bugzilla [13] entries. The
entries can be made literally by anyone with web access.
They might contain customer requests, bug reports, or just
ideas for refactorings. Additional information is entered
continuously, often to the level of specific tasks necessary
to address the request or problem. Every time a change is
made to one of the entries an email notification is sent to
the involved persons, including the customer if prevailing.

Business (the core DOC group development team) and
Development (domain experts in the core development
team) periodically assign priorities to the entries, this way
doing iteration planning. Customers get feedback on the
progress of their requests 1) via email notifications on
changes of the Bugzilla entries and 2) via issuance (and
announcement) of new beta kits.

We found that on-site customers are not strictly needed in
our environment. There are three reasons for this.

• The nature of framework software: is that it alone does
not provide any value. It needs to be integrated into
applications. But this can be done effectively at the
customer sites, too, and does not require to be done at
the location of the framework development team.

• Rapid feedback loops: by making progress information
and results quickly available to customers via mailing
the email lists/newsgroup and beta kits, respectively.

• Close email contact: involves the customer directly in
discussions about the schedule, supported features, and
planned enhancements.

This allows us to have the profit of customer involvement
and immediate feedback without having an on-site
customer.

DOC Group Roles
In the DOC group, everybody is a programmer; there is
nobody who only does monitoring or supervising. The
following list enumerates the rest of the roles and how we
fill them.

• Customer: The sponsors funding the research work are
the customers in our case. They have an interest in
getting work done, whereas mostly the scope and time
can vary.

• Tester: We have a dedicated tester. This is the person
who broke the last set of builds before the release of a

new beta version. By this rule, everybody -- well
almost everybody -- gets a chance to play the role of a
tester. Internally to the group, the tester has a
nickname, the Build Czar or Build Master. This comes
from the tradition that the one monitoring the
automated tests is also responsible for creating the next
beta version. While all team members are responsible
for building and testing prior to committing changes,
the Build Czar ensures that builds in fact remain clean.

• Tracker, Coach: The head of the research group,
together with the affiliated staff are the trackers, they
watch the schedule and make sure progress is made to
keep customer promises. They also play the role of
coaches, making sure the process works as a whole.

• Consultant: Everybody with a great new idea,
technique or technology plays from time to time the
role of a consultant by introducing them, bringing them
to the attention of the group, though the consultant is
never named as such.

• Big Boss: This role is greatly played by the director of
our research group. In general, developers make their
own decisions. However, when there is uncertainty or
lack of agreement, they may request a decision from
the Big Boss.

Code Ownership
In our group we have collective code ownership as XP
does. Generally, everybody is fixing anything that does not
work or needs to get enhanced. This holds true especially
for ACE. Regarding TAO we have some exceptions, here
the ownership is more for resource (people) allocation and
efficient use of those resources.

In some source code areas only one or two persons are
making changes. There are two reasons for this. One is the
research of these persons, the other is, that it is just more
efficient because the person is already familiar with it.
Proper documentation can minimize the risk and effort
needed when other people are forced to do changes.

Insourcing
In software development some people talk about
outsourcing, some kind of fashion in big companies,
nowadays. Kent Beck talks about insourcing , the process of
getting new people involved in development. For a research
group, especially at a University, it is mandatory to do
insourcing. Students come, students graduate, there is a
continuous fluctuation in the group. There is always
somebody new to the group, getting insourced. This
process needs to be optimized for a research group to
succeed. New members of the group get slowly introducing
in the environment; they get their first chances on small
work packages, mostly with mentoring from experienced
students. Pair programming brings them quickly up to
speed. Finally, after some weeks they start programming on
the hard stuff, e.g. the ORB core, in the case of TAO,
themselves.

 6

Insourcing at the level of open-source development gets
even more challenging. It is more rapid and often of shorter
term. People sometimes stay only for the term of a product
evaluation and/or project. Key prerequisites are proper
documentation, including tutorials and source code
documentation.

Testing
Developing ACE and TAO, we always have a test handy to
verify our actions. In the case of ACE, we have a special
use case for the framework in mind, which triggered the
extension/refactoring of it. In the case of TAO, we have test
cases telling us when we comply with the CORBA
specification.

Our tests use Perl [14] scripts. We use Perl because it is
available for nearly all platforms that we support. An OS-
independent testing tool is essential because there are so
many platforms, with sometimes subtle differences.
Monitoring the output of a Perl script is not as easy as
watching a bar coloring green or red [15], but it is
sufficient. We use conventions such as program exit status
of 0 for success and 1 for failure to enable automated
testing.

Unit tests are written for almost each class in ACE. TAO is
completely based on ACE, which assures its high
portability. Unit tests in TAO test functionality not already
tested in ACE.

Functional tests are provided by the customers and our
research group. The customers regularly run their
functional tests -- in many cases the test is part of their
actual application -- against the latest beta kit.

Our functional tests demonstrate compliance with the
requirements specified by customers. These functional tests
are collected in our regression test suite, which gets run
periodically, as often as every three hours, and on demand.
The suite executes on multiple platforms concurrently, to
make sure the developed code is runnable on all platforms.
The suite searches output for potential problems and emails
these to the group.

Refactoring
These days, ACE has pretty much matured; most
refactoring is done on TAO. Refactorings are triggered by
new versions of the CORBA specification, requests for
support of wider areas of the CORBA specification, and
performance optimizations - real-time ORBs just cannot be
slow.

Focusing on real-time environments, refactorings aim these
days at subsetting efforts, meaning things need to get more
and more modular. The footprint needs get small enough in
order to fit applications using the ORB on small devices.
One of the most common refactorings is the removal of
dependencies to enhance modularity, which helps reducing
the footprint. Such refactorings are often not trivial.

Changing interfaces is very problematic for frameworks
already in wide usage. Sometimes it might even be
reasonable to set up a new framework. Because ACE is in
widespread use, major interface changes are unacceptable.
However, interface changes are desired to support lighter
weight subsets for embedded systems. Our approach in this
instance is to initiate development of a separate product,
ACELite, though that is not a commonly applicable
solution for framework software.

40-Hour Week
The 40-hour week guideline holds true in every
environment, the DOC group is surely no exception. One
thing that might be different is that people tend to be in lab
quite a long time, as many as 60 hours a week. But that
does not mean that they are working all these hours. The
lab of the DOC group can be seen not only as a working
place, but also as a living place. Students do their
homework, email friends, have discussions, and these are
not only about software development.

When people do not follow the guideline and work long
hours, e.g. due to exams coming up or the creation of a
major release, the care and confidence in developing code
decreases dramatically. Learning from these experiences,
the students gain something for their later working life. It
prepares them to be sensitive to working for excessively
long periods of time.

XP for Large Projects
XP is intended to be used by small-to-medium size teams
[16]. However, our experience with ACE+TAO suggests
that it could be successfully used on large projects, which
we loosely define as involving 20 or more people. In this
subsection, we address the question: Does XP scale?

Communication is one of the most critical issues for large
projects. It is well known [17] that communication
overhead can dramatically reduce the productivity of a
development team. Besides the largeness, there is also the
distribution aspect of an open-source development team. It
is impossible to convene people for meetings.
Asynchronous communication media such as email and
newsgroups are preferred, because they do not require
simultaneous availability. To not get chaos this way, some
people need to play the role of a moderator, these are
mostly the people of the core development team. Timely
replies are admired by the submitters, and therefore this is
an unnamed rule in our communications: respond as
quickly as possible. This encourages further
communication, and assistance with solving problems or
designing enhancements. In addition, due to the
asynchrony, question/answer sets might have to bounce
multiple times before an issue can be resolved.

Source code control is invaluable for any serious software
development project. The DOC group relies on CVS [18],
as an example. We find it invaluable for documenting every

 7

file change, for maintaining file versions, for concurrent
development, and for support of branches. Another
important use of configuration management tools on large
projects is bug isolation. While we have not yet resorted to
an automated defect isolation approach, e.g. delta
debugging [19], we have used simple scripts to crudely
isolate specific problems.

Defect tracking is essential for large software development
projects. The DOC group uses Bugzilla [13] for tracking
problem reports and enhancement requests. We currently
do not require the use of problem reports, for historical
reasons (all changes are documented in ChangeLog
entries). However, a refined development process might
well require a report for every change. Tracking systems
support searching and categorization, contributing to a
better development process.

The third component of our development process is a clear
definition of the process. The core of this process is a set of
steps that must (well, should) be followed for every
software change. While this sequence is not necessarily
novel, we show it here to provide an indication of the rigor
in our process.

1. Every change to ACE+TAO must have a bug report.
Changes include fixes, enhancements, updates, and so
on.

2. Create a bug report.
3. Accept the bug report if you are going to implement

the change.
4. Implement the change in your workspace(s).
5. Test the change sufficiently to demonstrate that it

both does what is intended, and doesn't break
anything. The test may be as simple as building and
running the ACE tests on one platform, or as
complicated as rebuilding and testing all of ACE and
TAO on all platforms that we have.

6. Create an appropriate ChangeLog entry.
7. Commit the change using a ChangeLogTag commit

message.
8. Respond to the requester of the change, if any. This

must be done after committing the change.
9. Make sure that the requester is listed in the THANKS

file.
10. Update the bug report to indicate resolution.
11. Monitor the next round of build/tests for problems

with your change.
12. Respond immediately to reports of problems with

your changes.

Coding standards are necessary to support rapid
familiarization and refactoring [16]. Above all, standards
must emphasize communication. We have found this to be
extremely important on large, open-source projects.
Consistency between developers is even more important
given their sometimes vastly different experience and

goals. To encourage new contributors, there must be a low
entry barrier to understand existing code. And, consistent
coding style assists the gatekeepers in evaluating
contributed code for inclusion in the product.

A serious software development project must contain a
configuration management component. It must provide
read/write access to some developers, but read-only access
to others. The source database must reside at a well-know
location, and be accessible via email, the web, an intranet,
and/or other convenient means.

Ideally, the configuration management approach relies on a
problem/feature-tracking component to rigorously follow
up on every change to the product. To avoid duplication of
change documentation, for example, we continue to
maintain that in ChangeLogs. Source code control commit
messages consist simply of a ChangeLogTag, or link to the
appropriate ChangeLog entry. We wrote a short Perl script
to view the source code control (CVS) commit messages,
expanded to include the appropriate ChangeLog entries. In
some cases, problem reports contain more detailed or
unnecessary information for the ChangeLog. Therefore,
ChangeLog entries contain a problem report identifier
(Bugzilla Bug ID).

With a large user community, typical for open-source
products, structured feedback is essential. When new beta
versions are released users get notified via the
aforementioned email lists. Triggered by this, most of them
download and build the new version. Integration with their
tests and applications then shows whether existing bugs
were properly fixed, or if even new bugs were introduced.
For several years, we did not impose any structure on the
form of bug reports or queries. Necessary information was
often missing, and therefore required one or more requests
for more information from the user. We added a problem
report form, which requests such data as host (and target,
for embedded systems) platform type, compiler, phase at
which the error occurred, etc. The structured form draws
out the necessary information up front. In addition, it is
much easier for developers to rapidly find what they are
looking for in a bug report when it is structured.

Problem report forms for XP projects should contain
product version identification. As part of the ACE and
TAO kitting process, version numbers are automatically
inserted into the appropriate forms. This is especially
important for XP projects, with their many releases. There
is no need to conserve version identifiers; a new one should
be assigned to each iteration2.

2 We use an automated release script to assign a new
version identifier, update vers ion information in the
product, assign a source control tag, and create the product
kit.

 8

The large user community of an open-source product is
invaluable for testing. Bugs are found almost immediately
after release. A large, distributed, heterogeneous test
“organization” stresses a system much better than a static
regression test suite. Furthermore, the testers often track
down and fix the problems, saving both the effort of the
core development team and clock time. The user
community triggers a continuous introduction of fresh ideas
and techniques to the development team. So there is a huge
base of coaches, though coaching in a limited way.

Our experience is that XP can scale well. The reliance on
metaphor, testing, and self-documenting code contributes to
scalability. And a streamlined, tool-supported development
process is essential to scalability. Even more important are
the XP values: communication, simplicity, feedback, and
courage; all support the cooperation that is necessary for
the success of large development projects.

The one component of strict XP that does not scale is pair
programming. We consider a possible augmentation in the
following section.

4 REMOTE PAIR PROGRAMMING
One of the more prominent features of XP is pair
programming. Unfortunately, open-source development
does not support pair programming for the following
reasons:

• Remote developers: Many of the participating
programmers are physically distributed all over the
world. The Internet is connecting them via email and
configuration management.

• Transient developers: Often programmers outside the
location of the core development team are part of it
just for short term, mostly for the time of a project. The
terms these transient developers are participating are
often too short to profit of pair programming.

• Developers interested in only a small portion:
Programmers contracted by a company participating in
the open-source development can focus only on a
small portion of development. They have special
constraints regarding the time and effort they can
spend developing for everyone. Exchange of
information is limited to this part of the solution.

Pair programming profits from the fact that there is not
only one mind working, but two. Two minds develop ideas
around the same set of problems, but from a different kind
of perspective. Inductive reasoning suggests that more than
two minds could be even better. On the first thought one
would say yes, remembering Brooks law, one says usually,
maybe, or no. The problem is the communication overhead,
which gets bigger and bigger, the more and more people
are involved. This is the theory, now come some facts we
experienced.

In the following paragraphs, we elaborate why

programming environments, such as open-source
environments, are successful. Clearly, traditional pair-
programming does not always work well, for example, with
distributed development teams. Still, two or more people
can successfully work on the same set of problems. The
deficiency one notices first is the presumably high
overhead in communication. On the one side, from the
separation of locations, eye-to-eye communication is just
not possible, on the other side from the number of people
working on the ideas. It is clear that three people have to
communicate more than two. The solutions to this are
development environments, as for example the design fest
theme Concept Development at OOPSLA 99 [20]
suggested. Such environments bring people together from
various locations, via editors, chat channels, and eventually
voice channels to develop concepts, e.g. program designs
and implementations, as a team. This requires minimal
communication overhead. The communication overhead is
small due to the asynchrony and common documents.
Documents are shared in real-time, obviating meetings,
which are otherwise necessary for communicating them.
People at different locations can work on a problem as if
they all would sit in front of one machine.

Our successful experiences are based on such kind of
development, though our environment has not been that
complete, as described above. Using our configuration
management tool and email, we provide almost immediate
updates on the common documents, including source code.
Developers working together are sometimes only people of
the core team, but sometimes also developers from outside,
people who reported a bug, for example.

Due to asynchrony, of email for example, we gain some
decoupling over the traditional pair programming approach.
But there are also some limitations to remote pair
programming. These are:

• Weaker concentration : The remote pair programmers
are not physically adjacent, and therefore likely not as
involved in the programming process. If there is
sufficient communication delay, then pair
programming could degrade to code review. Good
support can help avoid this degradation to the extent
that it can supply the immediate communication
offered by pair programming.

• Speed-up: Pair programming can speed up
development, because two people make fewer mistakes
and often have a better design in mind than just one.
So fewer mistakes reduce the time of debugging.
Furthermore, the better design pays off when doing
refactoring, maintenance in the long term. Can it be
shown that open-source development using remote pair
programming can further speed up development due to
interleaved schedule of the participants working on
subsets?

• Learning/Coaching can be done effectively using pair

 9

programming, due to the tight feedback loop between
someone new to development in the project and
someone experienced. With open-source development,
there is naturally not such an optimized feedback loop.
However, remote pair programming might alleviate
this and leverage it to the same position in coaching.

Remote pair programming is a prerequisite to true support
of distributed XP. High-speed video, audio, and data
transfer, with reasonable but not exceptional quality, seem
necessary. We plan to experiment using TAO's AV
Streaming Service; its predictable and high performance
are ideally suited to the remote pair programming
application.

5 CONCLUDING REMARKS
Based on our experiences, we have found XP to be quite
suitable for large, open-source, framework development
projects. We have found that XP can be applied
successfully and beneficially to such projects. XP works
with projects that can incrementally grow to be large. It
works with open-source projects, given their rapid feedback
cycles. And, it works for framework development, even if
the frameworks are not simple.

Successful open-source development with XP is based on:

• high-standard coding guidelines combined with a
proper gatekeeper process,

• tight feedback cycle via active encouragement and
reward, and

• well-maintained user groups with fast responses.
Building frameworks with XP we had good experiences
with:

• using design patterns and pattern languages as
metaphors, and

• making the prevalence of standard APIs an advantage,
instead of a limitation.

University environments additionally need to:

• optimize insourcing,

• use pair programming for mentoring, and

• have collective code ownership.
Especially for large projects we found the following two
mechanisms valuable:

• asynchronous communication, and

• easy to follow development process.

One practice that we would like to augment is pair
programming. Large projects, including ACE and TAO,
often involve distributed development. This is especially
true with open-source projects, which encourage a very
large number of developers. The vast majority of these
developers has intimate knowledge of only a small portion
of the system, and often is directly involved with

development for short time periods. Therefore, it is not
feasible to practice traditional pair programming. We
would also like to explore alternatives, including advocates
in the core development team and remote pair
programming.

ACKNOWLEDGMENTS
We would like to thank Frank Buschmann, Lutz Dominick,
Jeff Parsons, Christa Schwanninger, and Nanbor Wang for
their insightful comments on drafts of this paper.

REFERENCES
[1] T. O’Reilly, The Open-Source Revolution, Release 1.0,
http://www.edventure.com/release1/1198.html, Nov. 1998.

[2] D. C. Schmidt and T. Suda, An Object-Oriented
Framework for Dynamically Configuring Extensible
Distributed Communication Systems, IEE/BCS Distributed
Systems Engineering Journal (Special Issue on
Configurable Distributed Systems), vol. 2, pp. 280–293,
December 1994.

[3] D. C. Schmidt, D. L. Levine, and S. Mungee, The
Design and Performance of Real-Time Object Request
Brokers, Computer Communications, vol. 21, pp. 294–324,
Apr. 1998.

[4] Wiki Web, Are You Doing XP, http://www.c2.com/
cgi/wiki?-AreYouDoingXp, 1999.

[5] Wiki Web, Wiki Web. http://www.c2.com/cgi/wiki?
WelcomeVisitors, 2000.

[6] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, M.
Kircher, and J. Parsons, The Design and Performance of a
Scalable ORB Architecture for CORBA Asynchronous
Messaging, in Proceedings of the Middleware 2000
Conference, ACM/IFIP, Apr. 2000.

[7] C. O’Ryan, F. Kuhns, D. C. Schmidt, O. Othman, and J.
Parsons, The Design and Performance of a Pluggable
Protocols Framework for Real-time Distributed Object
Computing Middleware, in Proceedings of the Middleware
2000 Conference, ACM/IFIP, Apr. 2000.

[8] A. B. Arulanthu, C. O’Ryan, D. C. Schmidt, and M.
Kircher, Applying C++, Patterns, and Components to
Develop an IDL Compiler for CORBA AMI Callbacks,
C++ Report, vol. 12, Mar. 2000.

[9] D. C. Schmidt, “Reactor: An Object Behavioral Pattern
for Concurrent Event Demultiplexing and Event Handler
Dispatching,” in Pattern Languages of Program Design (J.
O. Coplien and D. C. Schmidt, eds.), pp. 529–545,
Reading, MA: Addison-Wesley, 1995.

[10] D. C. Schmidt, Acceptor and Connector: Design
Patterns for Initializing Communication Services, in
Pattern Languages of Program Design (R. Martin, F.
Buschmann, and D. Riehle, eds.), Reading, MA: Addison-
Wesley, 1997.

 10

[11] P. Jain and D. C. Schmidt, Service Configurator: A
Pattern for Dynamic Configuration and Reconfiguration of
Communication Services, in The Pattern Languages of
Programming Conference (Washington University
technical report #WUCS-97- 07), February 1997.

[12] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal, Pattern -Oriented Software
Architecture - A System of Patterns. Wiley and Sons, 1996.

[13] The Mozilla Organization, Bugs, http://www.mozilla.
org/bugs/, 1998.

[14] L. Wall, T. Christiansen, and R. L. Schwartz,
Programming Perl. O’Reilly, 2nd ed., 1996.

[15] Erich Gamma and Kent Beck, JUnit,
http://www.xProgramming.com/software.htm, 1999.

[16] K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison Wesley
Longman, Inc., 1999.

[17] F. P. Brooks, The Mythical Man-Month, Reading, MA:
Addison-Wesley, 1975.

[18] SourceGear Corporation, CVS. http://www.sourcegear.
com/CVS, 1999.

[19] A. Zeller, Yesterday, My Program Worked. Today, It
Does Not. Why? in Software Enginering – ESEC/FSE ’99,
Lecture Notes in Computer Science Vol 1687, Springer
Verlag, Sept. 1999. Also published as ACM SIGSOFT
Software Engineering Notes, Vol. 24, No. 6, November
1999.

[20] OOPSLA 99, Design Fest. http://designfest99.
instantiated.on.ca, 1999.

