
Distributed eXtreme Programming

Michael Kircher Prashant Jain Angelo Corsaro, David Levine
Siemens AG Siemens AG Dept. of Computer Science.

Corporate Technology, CT SE 2 Plot No.6-A, Sector 18 Washington University
Otto-Hahn-Ring 6 Huda, Gurgaon-122015 1 Brookings Drive

81739 Munich, Germany Haryana, India St. Louis, MO 63130 USA
+49 89 636 33789 +91 124 639 8491 +1 314 935 5886

Michael.Kircher@mchp.siemens.de Prashant.Jain@ggn1.siemens.co.in{corsaro,levine}@cs.wust.edu

ABSTRACT
One of the key requirements of eXtreme Programming (XP)
is strong and effective communication between the team
members. To enable this strong level of communication
among team members, XP emphasizes the need to have the
team members physically located close to each other.
However, for various reasons, it may not be feasible to
have team members physically located close to each other.

To address these situations, we propose a crosscutting idea
called “Distributed eXtreme Programming” (DXP), which
inherits the merits of XP and applies it in a distributed
team environment. Our experiences show that DXP can be
both effective and rewarding in projects whose teams are
geographically distributed.

Keywords
XP, Distributed Development, Computer Supported
Cooperative Work

1 INTRODUCTION
eXtreme Programming (XP) [1] is a lightweight
methodology that has gained increasing acceptance and
popularity in the software community. XP promotes a
discipline of software development based on principles of
simplicity, communication, feedback, and courage. It is
designed for use with small teams that need to develop
software quickly and in an environment of rapidly changing
requirements. XP consists of twelve practices, which are
Planning Game, Small Releases, Metaphor, Simple Design,
Testing, Refactoring, Pair Programming, Collective
Ownership, Continuous Integration, 40-hour Week, On-Site
Customer, and Coding Standard. A careful analysis of these
XP practices reveals certain key assumptions made by XP:

Close Physical Proximity: XP advocates a strong level of
communication among team members. Among all of the
XP practices, one of the key practices is pair programming.
Pair programming is not just one person programming and
the other observing. Instead, it is a dialog between people
trying to simultaneously design, program, analyze, test, and
understand together how to program better. It is a
conversation at many levels, assisted and focused on a
computer [9]. Therefore, a key assumption made by XP is
strong and effective communication between the team
members, enabling the diffusion of know-how and
expertise throughout the group. To enable this strong level
of communication among team members, the literature on
XP emphasizes that it is important to have the team
members physically located close to each other. Ideally, the
team members should be all in one room. The reason for
this is to enhance the communication among team members
through incidental over-hearing of conversations [1] and to
minimize any hesitation that the team members might have
in communicating to each other.

Close Customer Involvement: Another important practice
of XP requires close customer involvement in the entire
development cycle. Different from traditional
methodology, XP stresses the role of an on-site customer
and thus recommends having a representative of the
customer working with the team all the time. The customer
or one of its representatives thus becomes an integral part
of the team. Therefore, a proper communication channel
between the customer and the rest of the team can easily be
realized if the customer is physically located on-site.

Thus, close physical proximity of team members along
with close customer involvement are key assumptions
made by XP. However, if physical proximity of team
members or the customer is not feasible or desirable, will
XP lose its effectiveness? In this paper, we show how XP
can be applied to software development and teamwork in a
distributed team environment. Our crosscutting idea is
whether it is really necessary for the team members to be
physically located next to each other.

Section 2 describes our extension to traditional XP that we
call Distributed eXtreme Programming (DXP). We

LEAVE BLANK THE LAST 2.5 cm (1”)
OF THE LEFT COLUMN ON THE FIRST PAGE
FOR THE COPYRIGHT NOTICE.
Preserve these six lines in some
cases, but make their contents
blank in your text.



2

describe the assumptions made by DXP, the rationale
behind DXP, the challenges in DXP and finally how to
address these challenges. In Section 3 we present our
experience report on using DXP and in Section 4 we
present our conclusions.

2 DISTRIBUTED EXTREME PROGRAMMING
We define Distributed eXtreme Programming (DXP) as
eXtreme Programming with certain relaxations on the
requirements of close physical proximity of the team
members. DXP applies XP principles in a distributed and
mobile team environment. In DXP, team members can be
arbitrarily far apart as well as highly mobile. Some ideas
towards DXP have already been mentioned at the "eXtreme
Programming and Flexible Processes in Software
Engineering XP2000" conference [5], [7].

DXP addresses all aspects of XP although to varying
degrees. There are in general certain things that are
irrelevant to the locality of the team, while others are
totally bound to the fact that the team members are co-
located. The following Table summarizes some of the
aspects that are relevant to DXP and some that are not.

XP Practice Requires co-located team?

• Planning Game
• Pair Programming
• Continuous Integration
• On-Site Customer

Yes. These rely on close
interaction among the business
people, including the on-site
customer, and technical people.

• Small Releases
• Metaphor
• Simple Design
• Testing
• Refactoring
• Collective Ownership
• 40-Hour Week
• Coding Standards

No. These can be done
independent of the fact that the
team is centralized or
distributed.

From this table it becomes clear that for effective DXP, we
need to address the practices of Planning Game, Pair
Programming, Continuous-Integration, and On-Site
Customer in a distributed team environment. In Section 2.6
we will see how these practices are addressed.

Note that we consider Refactoring, by itself, to not require
co-location. The actual implementation of a refactor relies
on Pair Programming. However, deciding whether it is
needed or its high level form is separate. Even more
concrete design tasks may best be initiated alone [14]; we
consider this to be part of the Refactoring, while the
implementation tasks fall under Pair Programming.

2.2 DXP Assumptions
To be effective, DXP assumes existence of certain
conditions as well as availability of several tools and

technologies. Beyond the assumptions of XP, like speaking
a common language and general openness, DXP assumes:

Connectivity: Some form of connectivity needs to exist
between the team members. If communication is performed
across long distances, it is assumed that the Internet is used
as communication media. For company-local commu-
nication an intranet can be used.

E-Mail: The ubiquitous availability of e-mail makes it a
key enabling technology for DXP. It can be used as a
convenient means to exchange information as well to
schedule any DXP sessions.

Configuration Management: Effective management of
programming artifacts mandates the use of some kind of
configuration management tool. This in turn serves as a key
enabler for collective ownership.

Application Sharing: To apply XP practices in a
distributed environment, some form of application or
desktop sharing software needs to be available to the team.

Video Conferencing: For effective communication using
audio and video among distant team members, some kind
of video conferencing [8] support is needed.

Familiarity: We expect that DXP can succeed only when
team members know each other well, and can view it as an
extension of their prior work arrangements.

2.3 Why DXP?
XP stresses the need for close physical proximity of team
members. However, circumstances may prevent a team
from working in close physical proximity, thus mandating
the need for using DXP. A company or a project may
therefore be forced to adopt DXP for the following reasons:

• Constrained by situation: A company or a project may
have little choice due to existing physical distribution of
development teams. Many projects are sanctioned with
teams residing in different locations, sometimes across
the globe.

• Individual Constraints: An individual may not be able to
work at his/her company's location due to personal
reasons and may therefore choose to work off-site. It thus
becomes important that the individual continues to stay
part of the development activities even while being
physically separated.

Even if a company or a project is not constrained by
circumstances, it may still choose to adopt DXP. This is
because, in addition to maintaining the benefits of XP
practices, DXP offers some additional benefits, including:

• Cost: A growing trend in the software industry is to
outsource all or part of a software project due to cost. It
is often much cheaper to get software developed in some
countries such as India or China. As a result, several
projects get distributed across two or more countries.



3

• Convenient Customer Involvement: DXP makes it easier
to involve the customer, even if he/she is unable to be at
the development site. With traditional XP, the customer
would have to stay on-site. This may not be desirable to
the customer since it may cut the customer off from
his/her company. In DXP, however, this problem does
not arise because the customer need not be on-site and
can simply be available to the development team through
videoconferencing.

• Mobility: In many organizations, some team members
need to travel frequently to maintain customer contacts,
to attend conferences, or for some other reasons. DXP
offers a smooth integration of mobile team members.
Mobile team members can stay connected with the rest of
the team using some form of mobile equipment, such as a
notebook with a small camera and an ISDN or a dial-up
connection. The team members can then participate in
the development activities for part of the day or even for
just a few hours.

DXP thus addresses both circumstantial constraints of
companies and projects as well as offers tangible benefits
in addition to those offered by XP.

2.4 Challenges in DXP
In relaxing the requirement of XP of close physical
proximity, DXP faces several challenges.

• Communication: An important aspect of communication
for humans is to know how the other person reacts to
what one says. To judge a reaction, typically a person
would read this information from body gestures, the face,
and the voice of the other person. In DXP, since the two
people are not physically next to each other, how can one
receive this information?

• Coordination: When two or more team members
working together on a project are in two different
physical locations, coordination among them becomes a
challenge. This can include synchronizing availability,
adjusting for time differences, and coordinating
distribution as well as integration of activities. In
addition, document/application sharing among the team
members can also prove to be a challenge.

• Infrastructure: Both communication and coordination
among team members in DXP depend heavily on the
infrastructure. This includes the available hardware and
software as well as the bandwidth of the connecting
network. A poor infrastructure can make it very difficult
to make up for the close physical proximity that can be
missing in DXP.

• Availability: Distributed team members may be available
at different times. Some of them might be working on
multiple projects and hence be restricted by time. Others
might be constrained by personal limitations. In addition,

the availability of distributed team members can also be
affected by different time zones.

• Management: The manager of the team needs to have a
high degree of trust in his/her subordinates if they are
often remote. Direct managerial control over distant
subordinates can be difficult to execute and therefore
new strategies may need to be defined.

2.5 Addressing the challenges/Solution
DXP offers many challenges. However, each of these
challenges can be addressed and in most cases overcome.

• Communication: Given a close-knit team, good
communication can take place among them without
requiring physical collocation. For example, assuming
you know the other person pretty well, a little video
picture of your partner might be sufficient to be able to
tell what he/she is thinking and how he/she reacts to your
comment. The team members can use many different
forms of communication to bridge the physical distance.
For example, they could convene a video or a phone
conference, or could send each other e-mail. In addition,
actual meetings could be convened periodically to
enhance inter-personal relationships among team
members thus making remote co-operation easier. When
deciding upon a particular form of communication, many
different factors need to be considered. These include
cost of equipment and its usage, travel costs, cost of time,
available bandwidth and the effectiveness of the
particular form of communication with respect to the
tasks that need to be performed.

Remote communication and cooperation can be greatly
improved by the ability of sharing documents. With web
technologies becoming more and more inexpensive and
therefore popular, new ways of communication are now
available that allow close involvement among team
members across intranet or Internet via video-
conferencing and application sharing.

• Coordination: Proper coordination of activities among
distributed team members requires a good bit of
planning. However, making extensive use of different
lines of communication can facilitate this. For example,
two members in different locations could exchange daily
e-mails containing their schedules for the day. They
could then assign certain slots within the day for working
on a project. In doing so, they would also need to take
into account any time differences that may exist.

• Infrastructure: The availability of the necessary technical
infrastructure is also very important. All team members
must have adequate software and hardware. Important
factors in choosing the software are ease of use,
interoperability with other tools, and availability on
different platforms. The hardware should be chosen with
particular care as well; in fact, each developer will need



4

the power of a classical development workstation,
combined with the features of a multimedia workstation.

• Availability: The DXP team needs to formulate rules and
guidelines in order to ensure availability of the team
members. The general XP spirit of not denying help to
anyone asking for it should be leveraged to being
available for remote communication. A daily or a weekly
schedule of availability of each team member should be
made available and easily accessible to all the team
members. Pair programming sessions or testing sessions
should then be scheduled based on the availability of the
team members and to allow maximum amount of
knowledge diffusion to take place.

• Management: Project leaders and the upper management
need to learn how to handle distributed teams. In
particular, project leaders need to learn how to manage
team members who are at different locations. This can
include requiring daily or weekly reports from all the
team members, whether local or remote. It can also
include giving regular feedback to team members to give
them a feel that they are connected and hence an integral
part of the team. In addition, regular team events can help
build trust and motivation among all the team members.

2.6 Addressing XP Practices & Values in DXP
In addressing the challenges of DXP it is important that the
practices and values of DXP are not violated. As identified
in Section 2.1, only four XP practices get affected in a
distributed team environment: Planning Game, Pair
Programming, Continuous Integration, and On-site
Customer. This section examines each of these practices in
the light of DXP and proposes possible solutions that can
be applied to keep DXP within the realms of XP practices.

Planning Game - For the planning game with the customer
being remote, video conferencing and application sharing
software support is needed. For example, application
sharing can be used to write the story cards. Ideally more
than two participants should be supported. Though this is
possible with certain solutions, such as CUseeMe [2], most
video conferencing software support only one pair of
participants.

Pair Programming - For pair programming between team
members in different locations, Remote Pair Programming
(RPP) should be used. This requires video conferencing
and application sharing support, to share the Integrated
Development Environment (IDE).

Continuous Integration - Because a remote team member
cannot move to a separate integration machine, a work-
around needs to be defined. If one team member is working
at the central team site, he/she can invite the other remote
team member to do common integration at that machine. If
both team members are remote, this is not possible and
therefore integration needs to be done on the same machine
where the development was done.

On-site Customer - Video conferencing should be used to
involve remote customers. In DXP, a remote customer is
not really an "on-site customer" any more. He/she is more
or less a "virtual on-site customer". The big difference is
that the customer needs to conform to a certain set of rules
such as coordination and availability.

In order to ensure that we did not modify XP in general, we
would like to revisit the four values of - Communication,
Simplicity, Feedback, and Courage - in the context of DXP.

Communication – The use of available tools makes it
possible to communicate effectively regardless of physical
location. Therefore, the value of communication in DXP is
as much as it is in XP.

Simplicity - The philosophy “Make it Simple” doesn’t
depend on the physical location of the team members, so
DXP does not affect this value.

Feedback – The value of Feedback is equally important in
DXP as it is in XP. The only difference is that feedback
needs to be propagated across distribution boundaries. If
there are no hurdles in communication among team
members, providing effective feedback should not be an
issue in DXP.

Courage - This value is not affected directly by the
distribution of the team.

Therefore, DXP does not modify the four XP values.

3 EXPERIENCE REPORT
To put DXP into practice, we set up a distributed team to
work on a common project called “Web-Desktop Project”.
The team consisted of:

Prashant, an Indian, working in Delhi, India

Michael, a German, working in Munich, Germany

Angelo, an Italian, traveling between St. Louis, USA,
Catania, Italy and Irvine, USA.

David, an American, working in Pittsburgh, USA

In this section we describe the project and how the team
worked together. We then present our experiences doing
DXP.

3.1 Project Description
The goal of our project was to develop software called
Web-Desktop that will provide the working environment
for DXP. The Web-Desktop is a desktop that is accessible
via a web page. All applications launched on this desktop
will actually run on the machine where the desktop was
downloaded. The Web-Desktop provides a set of
applications needed for most of the development and
management processes. Additional applications are
available for on-demand installation. The Web-Desktop is
state-full; the state is maintained in the server that provides
the Web-Desktop service and its components. Clients are



5

completely stateless. This makes it possible to have real
user mobility. Such software would allow a team member
to use any PC connected to the Internet to log on and have
the same look and feel, and the same working environment.
All the team would have to tell the customer to get
involved is the address of the web page. The solution
would give a lot of flexibility to mobile team members
working on a project. A mobile team member could now go
to an Internet cafe and plug in his/her web cam and/or
microphone and get connected to the rest of the team.
There would be no need to download and install software
on every machine that the team member uses.

Within the project, we defined roles for each person. David
was the customer while Michael, Angelo, and Prashant
were the programmers. As we had very little time available,
only approximately 3 weeks, we needed to make sure that
we focus on the four XP practices, selected in Section 2.

Planning Game - We ran several videoconference sessions
with David, our customer, discussing user stories. We used
a regular editor and shared it via an application sharing
software [12]. The story cards were then discussed and
estimated among programmers. Finally, David assigned
priorities and selected the cards for the first iteration.
Similar work was done for further iterations.

Pair Programming - We assigned story cards to pairs of
programmers and began the development process. We used
RPP as described in Section 2.6 thus making extensive use
of video conferencing and application sharing. We used
email to schedule appointments for our RPP sessions.

Continuous Integration – We used CVS [4] as our
configuration management tool. We integrated our changes
directly from our development branch into the main branch,
without changing computers since no integration computer
was available.

On-site Customer - We used videoconferencing to
effectively involve our customer throughout the project
lifetime. We used e-mail to communicate the time and
channel for upcoming videoconference sessions.

3.2 Resources Used
We used tools that were well supported, and easy to use
and integrate in our working environment. Whenever
possible, we picked tools that were either supported on
multiple platforms or could interoperate with analogous
software on other platforms or followed some standard. As
an example both NetMeeting and CUseeMe support the
ITU conferencing standard, and therefore can interoperate.

Every computer, desktop or notebook had a microphone,
speakers, and a web cam installed. We used NetMeeting
[12] as the videoconferencing and application sharing
software. For connectivity, we used a wide variety of links,
ranging from 33Kbps modems, 64Kbps ISDN, to 100Mbps
LAN connections.

3.3 Hurdles Encountered
During the project, we experienced the following hurdles:

• Our videoconferencing software, NetMeeting, did not
allow more than two participants in a session. An
additional conference server would have been needed to
enable conferences with more than two participants.

• It was cumbersome to capture story cards in a text file. A
better solution might have been to use a custom
WikiWikiWeb [10].

• Sharing of applications across Operating System
platforms was not possible using the NetMeeting
application sharing functionality. Virtual Network
Computing [11] might be a solution to this.

• We used a simple text editor for brainstorming, making
the process quite cumbersome. A tool like MindMapper
[6] could have made discussions about new ideas easier.

• Narrow bandwidth connections, e.g. dial-up, hindered the
use of video because of jitter introduced in audio along
with reduced responsiveness of application sharing. Our
fallback strategy was to use only audio conferencing, or
to switch to a chat channel.

• Power outage is at least in India still a problem. A
notebook computer with its own battery can be a
valuable help, at least for short outages.

• Lack of uniform access to the source code repository is
not a major hindrance, but results in inconveniences that
can have larger effects in the long run. As Prashant had
to work most of the time from behind a firewall, he was
not able to connect to the team repository directly. Other
team members had to send him snapshots of the code via
e-mail. This process was tedious and error-prone.

• Some of the keyboard settings were different among the
team members. For example, some characters like braces
seemed to work only if the parties involved in the
conference used the same keyboard, i.e. both American,
or German.

3.4 Lessons Learned
Our project was quite successful in using DXP and in the
process we gained some valuable experiences.

• We found that using a combination of synchronous
communication, such as videoconferencing, and
asynchronous communication, such as e-mail, to be the
most effective. Even though we used videoconferencing
along with application sharing, it could not completely
substitute the physical closeness as well as effectiveness
offered by XP. A video picture of the partner was
sufficient to tell what he was thinking or how he reacted
to a comment. However, what was missing was the
physical presence of the partner, which usually gives
company and can therefore never be completely



6

substituted with any kind of videoconferencing tool.

• Parallel development raises the issue of source code
integrity. Tools such as CVS [4] and ClearCase [13]
address the issue. Even though these tools support
distributed development, we have found that making
mutually exclusive changes helps reduce merge conflicts.
Therefore, we used an email token to serialize change
access when teams were working on common code
sections.

4 CONCLUSION
DXP can efficiently integrate remote and mobile team
members into the development process and is therefore a
valuable extension to traditional XP. In addition, it allows a
much more effective involvement of the customer
compared to XP, especially in situations where it seems
impossible to have an on-site customer.

DXP can therefore actively broaden the acceptance of XP
as lightweight software development process. We are aware
that a virtual meeting through a computer-supported
interaction can never replace direct human interaction.
However, there are situations where such interaction is not
feasible, and where a form of XP can still be successfully
employed.

As we wrote this paper, we realized that we heavily
touched the field of Computer Supported Cooperative
Work [3]. Further investigations need to be made how DXP
relates to this. We have found, not surprisingly, that for
computer-supported interaction to be successful, live
pictures and tone, namely video and audio, are elementary.

We will document guidelines on how to implement DXP in
a project in future papers.

The solutions proposed in this document might just be the
first steps to a general revolution in human interaction – the
long missed multimedia revolution, which is yet to happen.

REFERENCES
1. K. Beck, Extreme Programming Explained: Embrace
Change. Reading, Massachusetts: Addison Wesley
Longman, Inc., 1999.

2. CUseeMe Networks, Voice and Visual Communications
Over the Internet, http://www.cuseeme.com, 2001.

3. Applied Informatics and Distributed Systems Group,
Technical University Munich, Computer Supported
Cooperative Work, http://www.telekooperation.de/cscw/,
2001.

4. GNU Project – Free Software Foundation, CVS –
Concurrent Versions System, http://www.gnu.org/-
software/cvs/, 22 July 2000.

5. M. Kircher, and D. Levine, The XP of TAO – eXtreme
Programming of Large, Open-source Frameworks, Extreme

Programming Examined, Addison-Wesley, 2001

6. Bosley Group, Mind Mapper, mind mapping software,
http://www.mindmapper.com, 2001.

7. Till Schuemmer, and Jan Schuemmer, Support for
Distributed Remote Pair Programming, Extreme
Programming Examined, Addison-Wesley, 2001

8. R. Steinmetz, and K. Nahrstedt, Multimedia Computing,
Communication & Applications, Prentice Hall, NJ, 1996

9. L. A. Williams, and R. R. Kessler, All I Really Need to
Know about Pair Programming I Learned In Kindergarten,
Communications of the ACM, 2000

10. W. Cunningham, Wiki Wiki Web, Portland Pattern
Repository, http://www.c2.com/cgi/wiki?WikiWikiWeb, 5
January 2001.

11. AT&T Laboratories Cambridge, Virtual Network
Computing, http://www.uk.research.att.com/vnc/, 2001.

12. Microsoft, NetMeeting Home,
http://www.microsoft.com/windows/netmeeting/, 2001.

13. Rational ClearCase, http://www.rational.com/-
products/clearcase/index.jsp, 2001.

14. G. S. Cowan, “What kinds of tasks are best performed
alone?” in Pair Programming, Portland Pattern Repository,
http://www.c2.com/cgi/wiki?PairProgamming,
10 November 2001.


