
XP + AOP = Better Software?

 Michael Kircher Prashant Jain Angelo Corsaro
 Siemens AG Siemens AG Electrical and Computer
 Corporate Technology, CT SE 2 4-A Ring Road, I.P. Estate Engineering Department
 Otto-Hahn-Ring 6 Delhi, 110002 University of California, Irvine
 81739 Munich, Germany India CA 92697
 Michael.Kircher@mchp.siemens.de Prashant.Jain@mchp.siemens.de corsaro@ece.uci.edu

ABSTRACT
Aspect Oriented Programming (AOP) [5] is a paradigm
that enables clean modularization of crosscutting concerns.
AOP facilitates extensible architectures without requiring
major refactoring of code.

This paper presents a theoretical study about the influence
of AOP on eXtreme Programming (XP) [3]. The paper
analyzes the effect of AOP on the XP programming
principles, values, and practices, and whether it makes
sense for projects using XP methodology to introduce AOP.

Keywords
Extreme Programming, Aspect Oriented Programming

1 INTRODUCTION
Agile and lightweight software development methodologies
are increasingly enabling development scenarios in which
risk of failure can be assessed earlier and more easily.
These methodologies make it possible to cope with rapidly
changing requirements, thus enabling software projects to
be re-targeted easily. Extreme Programming (XP) is one of
the leading development methodologies in the agile process
arena.

To enable the flexibility required by agile methodologies,
the software that is written in these kinds of projects, more
than in any other, has to be amenable to change. This
mandates that the software be reusable, extensible, and
flexible. Object-orientation (OO) provides some of the key
concepts and mechanisms that facilitate software
reusability and extensibility.

OO techniques work great in encapsulating concerns and
responsibilities using artifacts such as a class. A concern
includes a property or an area of interest such as security
and quality of service. Using OO techniques for
encapsulating concerns works fine as long as the concerns
are isolated. However, often there are concerns that span
multiple classes. Such concerns are commonly referred to
as crosscutting concerns. For example, concerns such as
tracing, security and logging are crosscutting concerns
since they typically span multiple classes. Traditionally
most of the OO Languages like C++ and Java have lacked
any mechanism for encapsulating crosscutting concerns.
For example, a concern like tracing is typically distributed
over several, if not all, classes of a system. The lack of

support for encapsulating crosscutting concerns in OO
languages typically leads to tangled code that can become
hard to maintain, debug and extend.

Some languages like Common Lisp Object System (CLOS)
[2] contain a Meta-Object Protocol (MOP) that makes it
possible to encapsulate separation of concerns. However,
using such languages is usually quite complicated. Aspect
Oriented Programming (AOP) provides a programmatic
and encapsulated way of expressing crosscutting concerns.
It can complement OO techniques in producing code that
includes crosscutting concerns. Therefore, agile
development process in general and eXtreme Programming
(XP) in particular can take advantage of AOP. This paper
presents an analysis of the influence of AOP on XP.

Section 1 of this paper presents an overview of XP and
AOP. Section 2 elaborates on the advantages and
disadvantages of combing the AOP paradigm with the XP
programming principles, values, and practices. Finally
Section 3 presents our conclusion.

eXtreme Programming
eXtreme Programming (XP) [3] is a lightweight
methodology that has gained increasing acceptance and
popularity in the software community. XP promotes a
discipline of software development based on principles of
simplicity, communication, feedback, and courage. It is
designed for use with small teams who need to develop
software quickly in an environment of rapidly changing
requirements.

XP uses effective practices such as Refactoring, Pair
Programming, and Continuous Integration. Each practice
provides an important benefit to the development cycle. For
example, Refactoring provides a gradual change of source-
code to a more adaptable design. Pair Programming allows
two programmers to share their thoughts and know-how
working in front of a common screen. Finally, Continuous
Integration ensures that there is always a running system
executing all tests successfully.

Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) is a paradigm, which
enables separation of concerns, and provides a clean way of
encapsulating crosscutting concerns. The rationale behind
AOP is that computer systems are better programmed by

separately specifying and implementing the various
concerns of the system and some description of their
relationships. The mechanisms in the underlying AOP
environment are responsible for weaving or composing the
different concerns into a coherent program.

Concerns can range from high-level notions like security
and quality of service to low-level notions such as logging,
caching, buffering and so on. They can be functional, like
features or business rules, or nonfunctional, such as
synchronization and transaction management.

The problem is that with conventional programming
languages, there are certain concerns that are very hard to
encapsulate in a single programming language entity (e.g.,
a class or function). These concerns are known as
crosscutting concerns. Crosscutting concerns make
programs harder to read, maintain, understand, and reuse.
AOP focuses on mechanisms that enable clean
modularization of crosscutting concerns. For example,
using AOP the functionality of tracing can be treated as a
concern and factored out of existing code.1 Tracing serves a
common purpose in the application but crosscuts multiple
classes. Therefore, using AOP, the tracing code can be
factored out from all the classes into an aspect. The
locations in the application code from where the tracing
code is factored out are known as join-points. Once the
tracing code has been factored out, all the join-points are
declared in a file using a special notation. A tool such as
AspectJ [1] is then used to weave the aspect code that is the
tracing code, at the join-points. However, the actual
application code stays independent of any tracing code.
Thus there is a clear separation of application logic and
crosscutting concerns such as tracing.

2 COMBINING AOP AND XP
While XP is a methodology affecting overall software
design and development, AOP is a technique aimed at
separating and implementing crosscutting concerns.
Therefore, although at first glance the two may not appear
to have much in common, they do share a well-defined
intersection where AOP can influence the way XP is done.

One of the key ideas at the heart of XP is refactoring.
Refactoring offers numerous benefits to software
development and is therefore strongly supported by XP.
However, refactoring is often a tedious process involving
many repetitious steps of changing and testing code.

AOP, on the other hand, can allow for extensible
architectures without major refactorings. Therefore, adding
the AOP paradigm to the XP methodology can provide
several benefits to system developers.

1 Note, that aspects can also be created from scratch

This section presents an analysis of the effect of AOP on
the principles, values, and practices of XP as described in
[3].

In the following discussion we assume that programmers
can generally handle the complexity introduced by AOP.

Effect of AOP on XP Principles
The effect of AOP on XP principles is discussed below:

Assume simplicity – Introducing aspects separates the
concerns, so that it gets simpler to understand the
architecture. Since it is usually straightforward to work in
terms of aspects, AOP therefore supports the programmers
in their approach of assuming simplicity.

Embrace change – Aspects support change naturally since
they make changing application code less intrusive than
usual code changes. In addition, using AOP allows for the
introduction of crosscutting concerns into the application
code without requiring refactoring of the application
structure.

AOP has no effect on the following XP principles: Rapid
Feedback, Incremental Change, and Quality Work.

Effect of AOP on XP Values
The effect of AOP on XP values is discussed below:

Simplicity – Simplicity is improved with respect to the
structure of the application code. Crosscutting concerns are
untangled into aspects, which makes the code simpler to
understand. In order to fully leverage this, however, strong
support in visualization is needed to keep track of where
the aspects are applied.

Communication – Since an aspect addresses crosscutting
concerns, it can serve as an excellent source of
documentation. In fact, using AOP can enhance
communication and understanding of the code among
developers.

AOP has no effect on the following XP values: Courage
and Feedback.

Effect of AOP on XP Practices
The effect of AOP on XP practices is discussed below:

Simple Design – AOP leads to simple design by
incorporating separation of concerns. The increased
modularity of the code makes it easier to enhance the
software and make modifications.

 Studies [8] are under way to investigate the benefits and
liabilities of using architectural means, versus aspects to
develop certain features. Experience and practice will show
what succeeds in the future.

Collective Ownership – Aspects help reduce the need for
collective code ownership. This is because using aspects
helps separate tangled code and thus allows a more refined
separation of responsibilities of programmers. However,

even with such a separation of responsibilities, the need for
collective ownership cannot be totally eliminated. One of
the key benefits of collective ownership is the flexibility
and the ability to deal with having a programmer become
unavailable.

Another benefit of collective ownership is that it addresses
the common need of a programmer to touch multiple parts
of a system. Typically, when a new feature is added to a
system, multiple parts of the system are modified.
Collective ownership of code among programmers makes it
easier to modify multiple parts of the system. However, if
the project were using AOP then the need for collective
ownership would be weakened. This is because using AOP,
the aspects untangle code that earlier forced developers to
touch multiple parts of the system. Using AOP the
developers would ideally touch only a single aspect to
introduce a new feature to the system.

If AOP is introduced into a project that uses XP as a
methodology, it is important that every programmer
becomes familiar with AOP. If programmers were unable
to understand AOP code, they would not be able to
understand the code enough to change it. One suggestion
could be to use pair programming techniques for
communicating AOP knowledge within the team.

Refactoring – AOP can supplement tedious refactorings
since AOP can add functionality that the original code is
not prepared to do so. Refactoring can of course be applied
at both levels, the actual source code and the aspects
themselves as well.

On the others side, Aspects, as currently implemented by
AspectJ can be misused for patching, instead of properly
addressing the actual problem of separating entangled code
blocks. The misuse as patching mechanism undermines the
principle of OO.

Testing – AOP supports testing in many ways such as by
providing support for specialized test cases and spike tests.
AOP can be used to develop specialized test cases that
include combining multiple test cases. For example, using
AOP, test cases can be easily created that combine testing
of different input values to variables. This can include
testing various extreme (maximum, minimum) values as
well as invalid values to see if the code is able to handle
them. The test cases can be developed for testing the
variables independently or in combination. Therefore, using
AOP the number of test cases can be greatly varied and
extended. Also, using AOP measurement and
instrumentation are much easier and less intrusive to
implement.

AOP can also be used to factor out test code that is
commonly glued to the application code. This can reduce
the footprint and likelihood of unused code (dead code)
causing any problems at run-time.

While AOP helps to automate tedious testing, the
complexity introduced by the concept alone might be too
overwhelming for programmers. Therefore, all
programmers including testers that are involved in the
project should become familiar with AOP.

Small Releases – The differences between small releases
can be viewed as a set of aspects. This is related to the
concept of Multi-dimensional Separation of Concerns
(MDSOC) [6]. MDSOC provides many features including
modeling of separation of concerns among releases. The
rationale behind MDSOC is that any criterion for
decomposition is appropriate for some contexts, but not for
all. Similarly, AOP can provide a nice way of capturing
differences between releases.

Continuous Integration – AOP can make continuous
integration more difficult since with AOP it is necessary to
determine which aspects to weave in and which not for
every integration step. Nevertheless, AOP can be used for
providing a flexible means of integrating configurable
behavior.

Many projects require systems that are highly configurable.
As a result, such systems require transparent removal of
behavior that is not used or is not desirable. For example
applications running in a single-threaded environment do
not require synchronization. AOP can be used to allow for
such flexibility.

However, even though AOP can make continuous
integration more flexible, using it makes the code more
susceptible for configuration errors or bugs that only occur
under certain combinations of aspects.

Coding Standards – Because XP has no explicit design or
architecture phase, it is important that implementation
choices that have a critical impact on the quality of the
software get coordinated by coding standards. For example,
while using XP, the coding standards may require the usage
of Guarded Locking [9] instead of using locks directly.
Similarly, when integrating AOP with XP, the coding
standards would need to require the usage of AOP.

Coding standards need to specify how concerns should be
separated. In fact, coding standards for some concerns such
as initialization or logging can be enforced by Aspects
since they focus exactly on these issues. In certain cases,
AOP actually simplifies coding standards. For example,
tedious tasks such as the coding of object factories can be
taken over by aspects, which can then implement such
functionality [7].

AOP has no effect on the following XP practices: Pair
Programming, Planning Game2, Metaphor and On-Site

2 A technology that is used in implementing a system
influences the way that planning is done since the
technology usually has a certain overhead associated with

Customer.

To make effective use of AOP with XP, it is important that
the usage of AOP is properly controlled. One way to
control it is by using the Coding Standards to provide the
usage of AOP in the system.

3 CONCLUSION
AOP provides a programmatic and encapsulated way of
expressing crosscutting concerns that is usually missing in
OO languages. It can therefore complement XP
methodology giving developers a powerful tool to take
advantage of. As discussed in this paper, using AOP
benefits many values, practices, and principles of XP.
However, there are some areas where combining AOP and
XP requires careful thought and planning. The following
are some recommendations to developers who plan to
introduce AOP in their systems that use an XP
methodology.

Knowledge of developers – Since AOP affects all parts of a
system, it requires most, if not all, developers to be
knowledgeable of AOP. This in turn requires that the
developers be willing to adopt a new paradigm and educate
themselves on how to use both AOP and XP effectively.

Extensive use of AOP – AOP can be beneficial, but only if
it is used in the entire software. Using AOP for only single
tasks, such as testing, or implementing a single feature, will
lead to additional overhead. The more AOP is used in a
project, the more it will be worth investing the initial
learning overhead.

Using right tools – If AOP is used to encapsulate
crosscutting concerns into aspects, it becomes essential to
use the right visualization tool to view how and where the
aspects influence the base code. Therefore, it is important
that the right set of tools is available to help the developers
integrate AOP with XP. For example, if AspectJ is being
used, there are extensions available for IDEs such as
Emacs/XEmacs, JBuilder and Forte that provide
visualization of aspects.

Awareness of changes – AOP influences many XP values,
practices and principles. It is therefore necessary that
developers be aware of all the changes that are introduced
into the system as a result of using AOP. In particular,
since AOP can result in crosscutting changes that affect a
large part of the system, each change can in reality affect
several developers working on the system.

it. In the case of AOP the same rule applies - AOP affects
implementation of a system and hence the Planning Game.
However, the extent of the influence is similar to those of
other technologies. Therefore for the purpose of this paper,
we assume that AOP has no relevant impact on the
Planning Game.

Moreover, since AOP is still in its seminal phase, a lot of
research has to be done in order to develop a complete
understanding of the benefits and of the idiom behind AOP.

Just as OO techniques needed time to be mastered, the
same applies to AOP. The role of researchers is very
important since they need to provide examples and
guidelines of good use of aspects, similar to those that exist
for OO technology. Patterns, such as those documented in
[4][9], are one form to share such experiences. Organizing
a workshop at one of the pattern conferences, such as PLoP
or EuroPLoP, could be one way to further investigate this.

This paper made a first step in bringing the techniques of
AOP and XP closer together. Future work should include
practical evaluation in real applications to prove the
effectiveness of this analysis.

Thanks to Klaus Ostermann for providing us with excellent
feedback on earlier versions of this paper.

4 REFERENCES
[1] AspectJ homepage, http://aspectj.org, 2002

[2] D. Bobrow, R. Gabriel, and J. White, CLOS in Context,
1991

[3] K. Beck, Extreme Programming Explained: Embrace
Change, Addison Wesley Longman, Inc., 1999

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns – Elements of Reusable Object-Oriented
Software, Addison Wesley Longman, Inc., 1995

[5] Gregor Kiczales, John Lamping, Anurag Mendhekar,
Chris Maeda, Cristina Lopes, Jean-Marc Loingtier, and
John Irwin, Aspect-oriented programming. In Proceedings
ECOOP’97, LNCS 1241, Jyvaskyla, Finland, Springer-
Verlag , 1997.

[6] Hyperspaces homepage,
http://www.research.ibm.com/hyperspace, 2002

[7] K. Ostermann and M. Menzini, Object Creation Aspects
with Flexible Aspect Deployment, 2002

[8] R. Pichler, K. Ostermann, M. Mezini, On
Aspectualizing Component Models, submitted to European
Conference on Object-Oriented Programming, 2002

[9] D. Schmidt, M. Stal, H. Rohnert, and F. Buschmann,
Pattern-Oriented Software Architecture - Patterns for
Concurrent and Distributed Objects, John Wiley and Sons,
2000

http://aspectj.org/
http://www.research.ibm.com/hyperspace

	ABSTRACT
	Keywords

	INTRODUCTION
	eXtreme Programming
	Aspect-Oriented Programming

	COMBINING AOP AND XP
	Effect of AOP on XP Principles
	Effect of AOP on XP Values
	Effect of AOP on XP Practices

	CONCLUSION
	REFERENCES

