
Reducing Aspect-Base Coupling through Model Refinement

Aswin van den Berg1, Thomas Cottenier1,2, Tzilla Elrad2

1 Motorola Software Group, Motorola
1303 E. Algonquin Rd, 60196 Schaumburg, IL, USA

2 Concurrent Programming Research Group, Illinois Institute of Technology,
3100 S. Federal Street, 60696 Chicago, IL, USA

{aswin.vandenberg, thomas.cottenier}@motorola.com

{cotttho, elrad}@iit.edu

Abstract. Aspect-Oriented Programming languages allow pointcut descriptors to
quantify over the implementation points of a system. Such pointcuts are problematic
with respect to independent development because they introduce strong mutual
coupling between base modules and aspects. This position paper addresses the
aspect-base coupling problem by defining pointcut descriptors in terms of abstract
views of the base module. These abstract views should be towards the architectural
viewpoints of the system under development.

Since the inception of Aspect-Oriented Software Development (AOSD) in 1997, it has
been known that Aspect-Oriented Programming (AOP) languages introduce strong
coupling between base modules and aspects. AOP languages allow pointcut descriptors to
refer directly to the implementations of modules to capture joinpoints, points where
aspects inject behavior through advices. This practice is problematic with respect to
modularity and independent development. Aspects need fine-grained control over the
modules they advice and, vice versa, the advised modules need to be aware of those
aspects. Therefore, both aspect and base module become hard to evolve independently.

There are three main research directions in addressing this aspect-base coupling
problem. The first direction of research advocates restricting the expressiveness of aspects
by forfeiting the obliviousness of modules [1][2][3]. A second approach favors
investigating alternative ways to modular reasoning in the presence of aspects. In [4], the
authors argue that a global analysis of the system configuration is required before the
interfaces of the system modules can be determined. A third direction of research focuses
on methods that allow pointcut descriptors to be defined at a higher level of abstraction,
in terms of the program semantics [5]. Our work with Motorola WEAVR in [6] introduces
pointcut descriptors that can infer implementation joinpoints from higher level
descriptions. This paper proposes an approach to AO modeling that is integrated with a
model refinement approach with the purpose to reduce the aspect-base coupling.

Let M1 be the current refinement of a software system. We show five requirements for
moving towards our goal:

1. There needs to be an abstract view M0 of the refinement M1 of the system under
development that is sufficiently describing the behavior of its specification
towards a particular architectural viewpoint.

2. There needs to be a precise definition of what it means that a refinement is
realizing an architectural view. This realization can be described by a well-
defined mapping f from the refinement M1 to the view M0.

3. The development process/tool needs to enforce that the refinement of the view is
actually realizing the view. That is, the process/tool needs to enforce the
realization invariant M0 = f(M1).

4. Define pointcut descriptors in terms of the view M0. The matching produces a set
of joinpoints in M0 (denoted by Joinpoints_M0)

5. Translate these joinpoints in terms of the refinement M1 and instantiate the
advice at corresponding points in M1. The resulting woven model M2 is more
refined than M1 because it has a new concern incorporated in it.

M0 = f(M1)

M1

f

Pointcut Descriptor

match

f -1

JoinpointsM0

M2 = Woven_M1

Refinement

Advice Descriptor

+ =

instantiate

JoinpointsM1

M0 = f(M1)

M1

f

Pointcut Descriptor

match

f -1

JoinpointsM0

M2 = Woven_M1

Refinement

Advice Descriptor

+ =

instantiate

JoinpointsM1

Since the pointcut descriptor is written in terms of M0 it is completely independent

from the refinements that are introduced in M1. Since M0 is an abstract view towards an
architectural viewpoint it is not a view that is dependent on the pointcut descriptor. And
because M0 is not dependent on the pointcut descriptor it follows that also M1 is not
dependent on it. Therefore there is no aspect-base coupling between the aspect and the
refinements introduced from M0 to M1.

References
1. Aldrich, J. Open Modules: Modular Reasoning about Advice. In Proceedings of the 19th European

Conference on Object-Oriented Programming, Glasgow, Scotland, LNCS 3586, pp. 144-168, Springer,
2005

2. Griswold, W.G., Shonle, M., Sullivan, K., Song, Tewari, N., Cai, Y., Rajan, H.: Modular Software Design
with Crosscutting Interfaces. IEEE Software, 23:1, pp. 51–60, IEEE Computer Society, 2006

3. Gybels, K., Brichau, J.: Arranging Language Features for More Robust Pattern-Based Crosscuts. In
proceedings of the International Conference on Aspect-Oriented Software Development, , Boston, USA,
pp 60–69, ACM Press, 2003.

4. Kiczales, G., Mezini, M.: Aspect-Oriented Programming and Modular Reasoning. In proceedings of the
International Conference on Software Engineering, St. Louis, USA, pp 49–58, ACM Press, 2005

5. Ostermann, K., Mezini, M., Bockisch, C.: Expressive Pointcuts for Increased Modularity. In Proceedings
of the 19th European Conference on Object-Oriented Programming, Glasgow, Scotland, LNCS 3586, pp.
214-240, Springer, 2005

6. Cottenier, T., van den Berg, A., Elrad, T., Joinpoint Inference from Behavioral Specification to
Implementation, In Proceedings of the 21st European Conference on Object-Oriented Programming
(ECOOP), Berlin, Germany, 2007.

